-
公开(公告)号:CN115686048B
公开(公告)日:2023-06-02
申请号:CN202211365842.8
申请日:2022-10-31
Applicant: 哈尔滨工业大学
IPC: G05D1/08
Abstract: 本发明公开了一种执行器受限航天器交会系统的动态触发有限时间控制方法,所述方法包括如下步骤:步骤一:建立执行器受限航天器交会控制系统的轨道动力学模型,并得到相应的状态空间方程;步骤二:建立参量Lyapunov方程和动态事件触发机制,设计执行器受限情形下的基于动态事件触发机制的线性反馈控制律,保证在节省通信资源的情况下追踪航天器和目标航天器在有限时间T0内完成交会任务。本发明针对执行器受限的航天器交会控制系统,通过参量Lyapunov方程,设计基于动态事件触发机制的控制律,并保证在追踪航天器和目标航天器在有限时间T0内完成交会任务的同时,证明最小触发时间间隔的存在,也就是避免Zeno现象的发生。
-
公开(公告)号:CN114625008B
公开(公告)日:2022-12-16
申请号:CN202210266457.1
申请日:2022-03-17
Applicant: 哈尔滨工业大学
IPC: G05B13/04
Abstract: 一种自整定非线性迭代学习控制方法,属于超精密运动控制领域。所述方法的主要特征在于在已有鲁棒逆模型迭代学习控制方法的学习增益中额外添加一个自整定非线性学习系数。本发明相对于现有技术的有益效果为:对比鲁棒逆模型迭代学习控制方法,本发明公开方法能够更好地抑制非重复性误差的累积;对比卡尔曼滤波迭代学习控制方法,本发明公开方法中的非线性学习系数与误差相关,提升了学习效率;另外,对比传统非线性迭代学习方法,本发明公开方法采用自整定方法确定噪声‑不确定性的联合定界,避免了定界过高或过低引起的控制性能下降的问题。
-
公开(公告)号:CN114117815B
公开(公告)日:2022-06-10
申请号:CN202111468051.3
申请日:2021-12-03
Applicant: 哈尔滨工业大学
Abstract: 一种非最小相位运动系统逆模型前馈频域计算方法,属于超精密运动控制领域。前馈控制输入计算的目标是,得到一个理想前馈控制输入序列ur,当系统输入u=ur时,实现系统输出y对参考运动轨迹r的完全跟踪;所述方法适用于自身稳定的或可通过反馈控制稳定的线性定常系统,并且要求系统模型在复平面不含有单位圆上的零点。所述方法适用于单入单出系统或多入多出线性定常系统。本发明相对于现有技术的有益效果为:与近似求逆方法相比,本发明公开方法可以更准确地求解得到逆模型前馈控制输入;与时域稳定求逆方法相比,本发明公开方法实现了一种频域计算方式,并且无需对系统逆模型进行稳定‑不稳定分解,使计算过程更加简化。
-
公开(公告)号:CN105059572B
公开(公告)日:2017-04-26
申请号:CN201510446251.7
申请日:2015-07-27
Applicant: 哈尔滨工业大学
IPC: B64G7/00
Abstract: 基于PWM的气浮台平动控制方法,属于地面全物理仿真领域,本发明为解决现有气浮台平动控制方法控制精度低、推力器开启时间长、能源消耗大的问题。本发明具体过程为:根据位置基准信号和气浮台位置信号获取位置误差信号;PID控制器根据位置误差信号输出控制电压,将控制电压的调制波输送至PWM模块;PWM模块采用等腰三角形的锯齿波作为载波,将调制波与载波调制为PWM波;当PWM波占空比为1时,位置误差信号较大,推力器打开;当PWM波占空比小于1时,位置误差信号较小,在PWM波高电平时推力器打开,低电平时推力器关闭;推力器打开时将控制电压转换为脉冲形式的离散推力,推动气浮平台平动。本发明用于卫星地面仿真。
-
公开(公告)号:CN104020691B
公开(公告)日:2016-09-28
申请号:CN201410257825.1
申请日:2014-06-11
Applicant: 哈尔滨工业大学
IPC: G05B19/04
Abstract: 适用于多总线协议、多扩展接口的信号采集板卡,属于高精度运动控制的信号采集领域,本发明为解决目前市场上的多数信号采集板卡基于单一PCI、PXI或者ISA总线的方式,没有可以兼容多种总线协议的信号采集板卡的问题。本发明包括FPGA模块、DSP模块、m个RS422模块、通用扩展接口、第一电平转换模块、第二电平转换模块、n个光纤收发芯片、n个光纤接口模块、p个AD采集芯片、总线接口模块、PCI总线转接电路板、PXI总线转接电路板、ISA总线转接电路板和VME总线转接电路板;便于同其他信号采集单元通信或者将其他传感器模块的扩展。同时该信号采集板卡还预留了自定义总线的接口,便于用户根据自己需要自定义总线。
-
-
-
-