-
公开(公告)号:CN101187151A
公开(公告)日:2008-05-28
申请号:CN200710144663.0
申请日:2007-11-23
Applicant: 哈尔滨工业大学
IPC: D06M11/34 , D06M101/40
Abstract: 采用氧化处理碳纤维三维织物的方法,它涉及碳纤维三维织物的处理方法。它解决了现有碳纤维三维整体织物,碳纤维三维织物表面的乱层石墨结构,导致表面能低,表面呈化学惰性,使得碳纤维三维织物与树脂基体之间浸润性差,导致碳纤维三维织物与树脂基体的界面粘接性能差的问题。本发明的方法为:1.将碳纤维三维织物采用烧蚀法处理;2.放入氧化炉内,在密封状态下对织物进行一次氧化处理;3.进行二次氧化处理后,即得氧化处理的碳纤维三维织物。本发明方法处理后的碳纤维三维织物的内外氧化比较均匀,达到了均一化改性的目的;拉伸强度、弯曲强度和压缩强度分别提高11%、10%、150%;烧蚀性能得到改善;处理时间短、设备和工艺简单的优点。
-
公开(公告)号:CN100369949C
公开(公告)日:2008-02-20
申请号:CN200610009768.0
申请日:2006-03-06
Applicant: 哈尔滨工业大学
IPC: C08G59/14
Abstract: 耐高温4,5-环氧环己烷-1,2-二甲酸二缩水甘油酯环氧树脂体系及其制备方法,它涉及一种环氧树脂体系及其制备方法。它解决了原有环氧树脂材料耐高温性能差和制造新型耐高温环氧树脂成本过高的缺陷。本体系由4,5-环氧环己烷-1,2-二甲酸二缩水甘油酯环氧树脂TDE-85和对-亚苯基-2,2′-二(5-氨基苯并噁唑)按1∶0.5~0.8的化学计量比制成。其制备方法:一、TDE-85和对-亚苯基-2,2′-二(5-氨基苯并噁唑)混合;二、搅拌、加热,温度控制低于100℃至体系均匀;三、预交联产物分三个梯度连续固化,即得到耐高温4,5-环氧环己烷-1,2-二甲酸二缩水甘油酯环氧树脂体系。本发明制备工艺简单,成本低;制备出的环氧树脂体系耐高温性能提高了10%。
-
公开(公告)号:CN1948816A
公开(公告)日:2007-04-18
申请号:CN200610150986.6
申请日:2006-11-06
Applicant: 哈尔滨工业大学
Abstract: PBO纤维与碳纤维混杂复合材料高压储氮气瓶及制备方法,它涉及储氮气瓶及制备方法。它解决了现有采用单一纤维复合材料制作的高压储氮气瓶的特性系数低、安全性差的问题。本发明在氯丁橡胶内衬层(1)的外表面与粘接剂层(2)粘接,粘接剂层(2)的外表面与碳纤维复合材料内结构层(3)的内表面粘接,PBO纤维复合材料外结构层(4)的内表面缠绕在内结构层(3)的外表面上,外结构层(4)的外表面缠绕玻璃纤维复合材料外防护层(5)。方法为:在内衬层(1)的外表面上涂粘接剂层(2);叠加螺旋和环向缠绕内结构层(3)、外结构层(4)及外防护层(5);固化后即得到本发明的储氮气瓶。本发明的储气瓶工作压力达35MPa,循环充放的疲劳次数大于8000次。
-
公开(公告)号:CN1850903A
公开(公告)日:2006-10-25
申请号:CN200610010069.8
申请日:2006-05-23
Applicant: 哈尔滨工业大学
Abstract: 一种提高碳纤维/环氧树脂复合材料界面性能的方法,它涉及一种提高复合材料界面性能的方法。针对现有提高碳纤维复合材料界面性能方法,存在界面改性效果差,对纤维增强体损伤较大问题。本发明将碳纤维放入密闭容器中抽真空至压力低于0.2个标准大气压,再冲入惰性气体达1个标准大气压,再抽出惰性气体,将密闭容器经高能射线辐照,辐照剂量率为0.6~6KGy/h,辐照剂量为60~800KGy,之后,抽去密闭容器内的惰性气体,在负压下将5~100wt%丙烯酸溶液吸入密闭容器中浸没碳纤维反应后,取出碳纤维用去离子水冲洗、煮沸、烘干后与环氧树脂热压复合成型。经本发明制备的碳纤维/环氧树脂复合材料的层间剪切强度提高了5~19%、弯曲强度提高了3~16%。
-
公开(公告)号:CN111499866A
公开(公告)日:2020-08-07
申请号:CN202010501877.4
申请日:2020-06-04
Applicant: 哈尔滨工业大学
IPC: C08G73/10 , C08G73/12 , C08F299/02 , C08J3/24 , C08L79/08
Abstract: 一种高效催化固化苯乙炔封端聚酰亚胺树脂体系的制备方法,属于材料领域。所述方法如下:配制苯乙炔封端聚酰亚胺树脂溶液,在树脂体系中加入新型高效、催化剂,对添加了新型高效复配催化剂的树脂体系进行梯度固化,首先在120℃温度下固化1h,然后在240℃温度下固化2h,最后在300℃温度下固化3~4h,即得到固化完全的苯乙炔基封端的聚酰亚胺树脂。本发明的优点是:本发明制备的苯乙炔基封端的聚酰亚胺树脂固化温度明显下降,最高固化温度不超过300℃。本发明中苯乙炔基封端的聚酰亚胺树脂低温固化工艺可靠,采用新型高效催化剂催化固化反应,使得反应均匀,操作简单,工艺稳定,适用于工业化生产。
-
公开(公告)号:CN107376674B
公开(公告)日:2020-05-26
申请号:CN201710676845.6
申请日:2017-08-09
Applicant: 哈尔滨工业大学
Abstract: 一种POSS装甲聚酰胺反渗透膜表面提高耐菌性的改性方法,属于材料改性领域。所述方法步骤如下:(1)配置樟脑磺酸、十二烷基苯磺酸钠及间苯二胺的混合溶液;(2)将聚醚砜基膜表面浸没在混合溶液中;(3)将聚醚砜基膜取出,在空气中晾5~10分钟;(4)将聚醚砜基膜浸没在1,3,5‑均苯三甲酰氯正己烷溶液中,保持1min;(5)将膜取出,在空气中晾2分钟;(6)将膜浸泡在POSS‑NH2·HCl水溶液中,保持1~15min;(7)将膜置于40~80℃的烘箱中,反应10~20min,然后将膜片取出,置于4℃下保存。本发明的优点是:本发明的改性方法可避免使用过程中POSS‑NH2·HCl的迁移,同时在反渗透膜表面形成新的物理防护功能层,赋予反渗透膜高的抗细菌污染性能。此方法工艺简单,制备方便。
-
公开(公告)号:CN105199137B
公开(公告)日:2018-03-16
申请号:CN201510566868.2
申请日:2015-09-08
Applicant: 哈尔滨工业大学
Abstract: 一种多孔聚合物复合膜材料的制备方法,本发明涉及复合膜材料的制备方法。本发明要解决锂离子电池隔膜的熔断温度低与高温刺穿强度低的问题。方法:一、在多孔膜材料表面形成羧基基团;二、在多孔膜材料表面形成酰氯基团;三、在多孔膜材料表面形成含羟基基团或者含胺基基团;四、活化处理;五、将单层的纳米纤维接枝到多孔膜材料表面;六、处理成膜;七、热压处理。本发明采用纳米粒子增强与化学键交联的方式将高性能聚合物纳米纤维与锂离子电池用聚烯烃类隔膜材料有机的结合在一起,得到一种高性能的锂离子电池用多孔隔膜材料。
-
公开(公告)号:CN107556749A
公开(公告)日:2018-01-09
申请号:CN201710774577.1
申请日:2017-08-31
Applicant: 哈尔滨工业大学
Abstract: 一种配位与阴离子协同催化固化氰酸酯树脂体系及其制备方法,属于高性能复合用树脂材料领域。本发明的具体工艺为将氰酸酯树脂和叔胺基环氧固化剂(AG-80,AG-90)按照一定比例混合进行共固化,在混合树脂体系中加入新型高效复配催化剂,进行梯度固化,首先在70~110℃温度下固化2~4h,然后在110~140℃温度下固化3~5h,最后在155℃温度下固化4~6h,即得到固化完全的氰酸酯树脂。本发明的优点是:本发明制备的氰酸酯数值固化温度明显下降,最高固化温度不超过155℃,远低于现有技术中多官能团氰酸酯树脂固化温度280℃;本发明中氰酸酯树脂低温固化工艺可靠,采用新型高效复配催化剂催化固化反应,使得反应均匀,操作简单,工艺稳定,适用于工业化生产。
-
公开(公告)号:CN104945635A
公开(公告)日:2015-09-30
申请号:CN201510370363.9
申请日:2015-06-30
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种两亲性聚合物PVP-g-PVDF-g-DMF及其制备方法与应用,所述两亲性聚合物PVP-g-PVDF-g-DMF由PVDF分离膜的铸膜液主要成分PVDF树脂、超亲水的溶剂小分子N,N-二甲基甲酰胺(DMF)和亲水的大分子制孔剂聚乙烯吡咯烷酮(PVP)利用高能辐照方法进行制备而成,该两亲性聚合物可以用于制备亲水改性PVDF膜。本发明制备的两亲性聚合物所使用的物料组成成分全部取自于制备PVDF分离膜的材料体系,未额外添加其它物质,所制得的改性物料体系无需分离提纯即可直接使用,辐照接枝反应过程中无污染、绿色环保,且可在室温条件下进行,反应均匀,操作简单,工艺稳定,质量可靠,适用于工业化生产。
-
公开(公告)号:CN103773086B
公开(公告)日:2015-04-15
申请号:CN201410017604.7
申请日:2014-01-15
Applicant: 哈尔滨工业大学
Abstract: 一种石墨烯胺功能化组装方法,属于材料表面改性技术领域。所示方法包括如下步骤:A、化学镀液配制;B、表面化学镀铜;C、洗涤;D、组装。本发明通过化学镀的方法在石墨烯表面镀上一层金属铜,由于二乙烯三胺分子中的氮原子有孤对电子,可以与金属铜原子外层的空轨道发生配位作用,使二乙烯三胺在石墨烯表面自组装,二乙烯三胺分子中一个胺基与铜配位,还有两个胺基形成反应活性点,因此可以使石墨烯表面胺功能化,进而改善其与高分子材料的相容性,提高高分子材料的性能。本发明的石墨烯表面胺功能化的组装效果显著,室温条件下进行,原料廉价易得,反应均匀,操作简单,工艺稳定,质量可靠,适用于工业化生产。
-
-
-
-
-
-
-
-
-