-
公开(公告)号:CN104422425B
公开(公告)日:2017-02-22
申请号:CN201310377247.0
申请日:2013-08-27
Applicant: 北京航天计量测试技术研究所 , 中国运载火箭技术研究院
IPC: G01C1/00
Abstract: 本发明涉及运动物体空间姿态动态测量技术领域,具体公开了一种不规则外形物体空间姿态动态测量方法。该方法包括:1)在被测物上设置光学靶标,并利用激光跟踪仪对所有光学靶标进行全局校准;2)利用相机测量系统标定技术对测量系统进行标定,并控制左右两相机同步采集测量图像,并通过图像处理技术提取光学靶标的图像坐标;3)利用步骤1、2所获得的光学靶标在被测物坐标系下的三维坐标和在测量坐标系下的三维坐标,获得旋转矩阵,获得被测物的三维空间姿态角。该测量方法,可以测量非轴对称的不规则外形的空间物体的瞬时空间三维姿态角;在测量范围2m×2m×2m的空间中,测量频率1000Hz的测量条件下,测量精度可达到空间角合成均方根误差小于0.05°。
-
公开(公告)号:CN105651306A
公开(公告)日:2016-06-08
申请号:CN201410640565.6
申请日:2014-11-13
Applicant: 北京航天计量测试技术研究所 , 中国运载火箭技术研究院
IPC: G01C25/00
Abstract: 本发明属于计量测试技术领域,具体涉及一种基于定向反射球的三维标定装置,目的是解决现有技术或操作繁琐、或标定信息少的问题。其特征在于:它包括基础框架(1)、靶位支撑结构(2)、反射球靶位(3)和定向反射球(4);其中,基础框架(1)为正方体框架或六面体框架;靶位支撑结构(2)为杆状,安装在基础框架(1)的顶部和前侧面和左侧面上;反射球靶位(3)为金属制杆状,安装在加装靶位支撑结构(2)后的基础框架(1)的顶部、前侧面和左侧面的节点上;定向反射球(4)表面为定向反光材料,安装在反射球靶位(3)上。本发明质量轻、结构稳定性好、尺寸大,且对各点位安装位置无严格要求,易于实现。
-
公开(公告)号:CN105627918A
公开(公告)日:2016-06-01
申请号:CN201410635996.3
申请日:2014-11-05
Applicant: 北京航天计量测试技术研究所 , 中国运载火箭技术研究院
IPC: G01B11/00
Abstract: 本发明属于几何量精密测量技术领域,具体涉及一种用于视觉精密测量的轴孔基准现场快速引出工装及方法,目的提供一种引出工装及方法。该工装包括轴基准引出工装和孔基准引出工装。该方法包括建立工装坐标系、标注定向反射球球心在工装坐标系下的三维坐标值、安装轴孔基准现场快速引出工装、测量和数据处理五个步骤。本发明的引出工装和基于该工装的方法能够有效解决应用视觉精密测量系统测量以轴或孔的轴线与基准平面的交点作为基准点定义工件坐标系的大型机械部件时,测量坐标系与工件坐标系的现场快速建立问题。
-
公开(公告)号:CN104567919A
公开(公告)日:2015-04-29
申请号:CN201310474394.X
申请日:2013-10-12
Applicant: 北京航天计量测试技术研究所 , 中国运载火箭技术研究院
IPC: G01C25/00
CPC classification number: G01C25/00
Abstract: 本发明属于摄影测量系统动态测量误差标定技术领域,具体涉及一种标定摄影测量系统动态测量误差的装置及使用方法,目的是提供一种能够实现摄影测量系统动态测量误差标定的装置及其使用方法。所属的装置包括转台系统、标定模拟件(4)、同步控制器、坐标转换标志球(3)和立体靶标球。本发明采用由转台系统、标定模拟件4、同步控制器、坐标转换标志球3和立体靶标球组成的标定装置,实现了对待标定摄影测量系统的动态测量误差标定,填补了动态误差标定装置和方法的空白,并具有高的测量精度。实验结果显示,该标定方法准确可靠,实验数据良好,系统不确定度U=5″,k=2。
-
公开(公告)号:CN104459710A
公开(公告)日:2015-03-25
申请号:CN201310453237.0
申请日:2013-09-25
Applicant: 北京航天计量测试技术研究所 , 中国运载火箭技术研究院
IPC: G01S17/10
CPC classification number: G01S17/08
Abstract: 本发明属于激光测距技术领域,具体涉及一种脉冲/相位一体式激光测距仪。窄脉冲发生电路、正弦波发生电路通过模拟开关A与半导体激光器连接;半导体激光器发射的激光一路经过发射镜、测量目标、接收镜接收后输入APD探测器,经运算放大器B放大后输出回波信号;半导体激光器发射的激光另一路输入PIN探测器,经运算放大器A放大后输出参考信号;模拟开关B接收激光发射脉冲/连续波双模式调制电路产生的参考信号和回波信号,模拟开关B可以切换至与模拟开关C连接,也可以经过混频滤波电路后与模拟开关C连接;模拟开关C与双路高速比较器连接,双路高速比较器与时间间隔测量电路连接。本发明解决单台激光测距仪不能具备脉冲、相位两种测量模式问题。
-
公开(公告)号:CN104345519A
公开(公告)日:2015-02-11
申请号:CN201310322437.2
申请日:2013-07-29
Applicant: 北京航天计量测试技术研究所 , 中国运载火箭技术研究院
IPC: G03B7/00
Abstract: 本发明属于测控技术领域,具体公开了一种同轴驱动相机光强调节机构,包括相机、镜头和电机。镜头位于电机的转子内,镜头前端设有偏振片套,该偏振片套与电机弹性连接,偏振片套内设有前偏振片和偏振片压圈,相机颈部设有后偏振片和开口锁紧环,所述的偏振片套、前偏振片、后偏振片、相机、镜头的光轴和电机的回转轴同轴。由于采用双偏振片对进入相机的光强进行调节,两个偏振片进行叠加得到最终进入相机的光强信号,从而得到光强分布均匀,图像灰度值稳定的恒光强图像。
-
公开(公告)号:CN114749311B
公开(公告)日:2023-07-04
申请号:CN202210197060.1
申请日:2022-03-02
Applicant: 北京航天计量测试技术研究所 , 西安航天发动机有限公司
Abstract: 本发明公开了一种光学精密测量显像剂喷涂装置,涉及三维光学精密测量技术领域,包括:雾化机构、透明储液罐和自动搅拌器Ⅰ;其中,透明储液罐用于存放液体涂料;所述自动搅拌器Ⅰ一端设置在透明储液罐的上盖上,另一端伸入透明储液罐内部;透明储液罐的下端通过进液转接工装与雾化机构直连,且雾化机构与外部气路连接,外部气路用于提供液体涂料雾化所需的压缩气体;该装置能够实现光学显像剂的长时间、均匀、快速、自动化喷涂,用于高反光零件光学精密测量的预处理,有利于提高高反光零件的光学三维测量点云坐标的测量精度。
-
公开(公告)号:CN113686268A
公开(公告)日:2021-11-23
申请号:CN202110790298.0
申请日:2021-07-13
Applicant: 北京航天计量测试技术研究所 , 西安航天发动机有限公司
Abstract: 本发明提出一种涡轮导向器排气面积自动测量系统及测量方法,基于非接触光学测量原理,能够解决现有测量系统测量效率低、测量精度差的问题。该测量系统基于非接触光学测量原理,通过高精度光学扫描仪直接测量涡轮导向器每个喉道轮廓的三维点云坐标,得到高精度、高密度点云数据;然后通过测量得到的点云数据拟合每个喉道的三维轮廓,再计算每个喉道排气面积与导向器总排气面积;且在测量过程中,通过六自由度机器人与单轴转台联动,精确、快速定位高精度光学扫描仪与被测导向器的相对位置。
-
公开(公告)号:CN104427253B
公开(公告)日:2018-07-27
申请号:CN201310368326.5
申请日:2013-08-22
Applicant: 北京航天计量测试技术研究所 , 中国运载火箭技术研究院
IPC: H04N5/235
Abstract: 本发明属于摄影测量技术领域,具体涉及种相机光强自动调节装置。其包括相机、固定偏振片、测速机、空心轴电机、旋转偏振片及配套电路;图形采集及处理计算机采集图像信息并解算背景灰度值;灰度信号采集电路采集灰度信号并输入到比较电路2与设定的目标灰度值比较;比较值通过比例调节电路后作为速度环设定值;测速机测量得到空心轴电机的旋转速度,通过测速机信号采集电路采集后,输入到比较电路1,该速度值与速度环设定值进行比较,解算获得电机速度偏差;由控制电路将偏差信号进行解算,形成控制信号,经过功率放大电路后,传输给电机驱动电路驱动空心轴电机旋转;该过程循环进行,不断修正空心轴电机的角度位置,实现控制偏振片偏转角度。
-
公开(公告)号:CN108120420A
公开(公告)日:2018-06-05
申请号:CN201611090129.1
申请日:2016-11-30
Applicant: 北京航天计量测试技术研究所 , 中国运载火箭技术研究院
Abstract: 本发明属于应变传感器校准技术领域,具体涉及一种双向应变场产生与加载装置。电机与丝杠连接,丝杠与下丝杠滑块和上丝杠滑块连接,下丝杠滑块和上丝杠滑块之间连接有下传力梁,上丝杠滑块上部连接有上传力梁,下丝杠滑块和上丝杠滑块两侧均与导轨连接,下传力梁的两端与外侧传力杆连接,上传力梁的两端与内侧传力杆连接,传力杠杆的两端通过圆柱传力轴分别与外侧传力杆和内侧传力杆连接,简支梁与传力杠杆连接。本发明能够对应变梁进行双向拉、压力加载,从而在应变梁同一侧等应变区域产生正、负应变场,实现对应变传感器单次安装后即可完成正负量程的校准。
-
-
-
-
-
-
-
-
-