-
公开(公告)号:CN112648200B
公开(公告)日:2021-10-19
申请号:CN202011553297.6
申请日:2020-12-24
Applicant: 北京理工大学
Abstract: 本发明公开了一种具有振动抑制功能的燃料电池汽车高速电动空气压缩机,空压机本体为离心式空气压缩机;空气网管与空压机本体的出气口连接;泄压罐与空气网管连通;泄压罐与空气网管之间设有第一电磁阀;泄压罐安装在空气网管靠近空压机本体的出口处的一端;第一压力传感器安装在空压机本体的出气口处;第二压力传感器安装在空气网管内;首先获取氢氧燃料电池在当前或预测的下一时刻工况下对应的空压机本体的目标压力;当第二压力大于第一压力时,第一电磁阀打开,使第二压力低于第一压力与目标压力中的较小值;调节空压机本体的转速,使第一压力趋近于目标压力。本发明能够解决离心式空气压缩机所产生的喘振问题。
-
公开(公告)号:CN112727927A
公开(公告)日:2021-04-30
申请号:CN202011575888.3
申请日:2020-12-28
Applicant: 北京理工大学
IPC: F16C32/06 , F16C32/04 , H01M8/04089 , H01M8/04111 , H01M8/04082
Abstract: 本发明公开了一种用于燃料电池系统空气压缩机的空气轴承,其中,包括支撑环,所述支撑环为圆环形,且所述支撑环的中心线位于水平面内;所述支撑环内设有气腔,所述气腔为半环形结构,且所述气腔位于过所述支撑环的中心线的水平面的下方向;所述气腔由位于所述支撑环上的内支撑部和外支撑部构成;所述外支撑部上设有进气孔,所述进气孔被设置为用于连接高压气源,所述内支撑部上设有多个喷气孔,所述喷气孔朝向所述支撑环的中心线;所述支撑环上还设有出气孔,所述出气孔位于过所述支撑环中心线的水平面的上方。本发明能够适用于氢燃料电池汽车空气压缩机。
-
公开(公告)号:CN110834544B
公开(公告)日:2021-04-20
申请号:CN201911132908.7
申请日:2019-11-19
Applicant: 北京理工大学
Abstract: 本发明公开了一种基于模糊‑PI复合控制的纯电动汽车恒流控制系统和方法,该系统包括目标电流采集单元、输出电电流采集单元、比较单元、模糊控制器、PI控制器、再生制动控制单元、电机控制器、超级电容和电机控制器;比较单元分别与目标电流采集单元和输出电流采集单元电连接;比较单元分别与模糊控制器和PI控制器电连接;模糊控制器用于通过模糊控制算法输出第一控制信号;PI控制器用于通过PI控制算法输出第二控制信号;模糊控制器和PI控制器均与再生制动控制单元电连接;电机控制器和超级电容均与再生制动控制单元电连接;再生控制主电路用于根据第一控制信号或第二控制信号给电机控制器供电。本发明能使得制动更加平稳。
-
公开(公告)号:CN112628174A
公开(公告)日:2021-04-09
申请号:CN202011509857.8
申请日:2020-12-18
Applicant: 北京理工大学
IPC: F04D25/08 , F04D29/58 , F04D17/10 , H01M8/04089 , H01M8/04111 , H01M8/04082 , H02K9/193 , H02K5/20
Abstract: 本发明公开了一种燃料电池高速电动空气压缩机的散热系统,涉及氢氧燃料电池技术领域。本发明包括电机,电机设置在一圆柱形壳体内;电机与圆柱形壳体同轴设置,且与圆柱形壳体之间形成高压腔;圆柱形壳体的两端均设有挡板;挡板的中部开设有与圆柱形壳体的中心线重合的安装通孔;挡板远离圆柱形壳体的一侧安装有进风筒;进风筒与高压腔体连通;电机的转轴的两端分别延伸入进风筒;转轴的两端均安装有进风组件;电机的外周设有第一冷水管;第一冷水管位于高压腔内。本发明通过向第一冷水管、第二冷水管内通冷却水能够快速的对电机进行降温,避免电机因温度过程损坏,同时也能够对压缩后的空气进行降温,避免压缩后的空气温度过高。
-
公开(公告)号:CN112582646A
公开(公告)日:2021-03-30
申请号:CN202011509892.X
申请日:2020-12-18
Applicant: 北京理工大学
IPC: H01M8/04082 , H01M8/04089 , H01M8/04111 , H01M8/0438 , H01M8/04746 , B60L50/70 , B60L58/30
Abstract: 本发明公开了一种氢氧燃料电池汽车超高速电动空气压缩机的扩稳控制方法,所述扩稳控制方法包括如下步骤,S1,根据当前车辆工况,获取所需要空气的进气压力值,并将所需要空气的进气压力值记为第一压力值;S2,获取当前网管的空气压力值和二级空气压缩机的出口压力值;并将网管的空气压力值记为第二压力值,将二级空气压缩机的出口压力值记为第三压力值;S3,判断第一压力值、第二压力值和第三压力值的关系,并根据该关系对电动空压机进行控制。本发明能够保证高速电动空压机在高速转动时的稳定性。
-
公开(公告)号:CN110834544A
公开(公告)日:2020-02-25
申请号:CN201911132908.7
申请日:2019-11-19
Applicant: 北京理工大学
Abstract: 本发明公开了一种基于模糊-PI复合控制的纯电动汽车恒流控制系统和方法,该系统包括目标电流采集单元、输出电电流采集单元、比较单元、模糊控制器、PI控制器、再生制动控制单元、电机控制器、超级电容和电机控制器;比较单元分别与目标电流采集单元和输出电流采集单元电连接;比较单元分别与模糊控制器和PI控制器电连接;模糊控制器用于通过模糊控制算法输出第一控制信号;PI控制器用于通过PI控制算法输出第二控制信号;模糊控制器和PI控制器均与再生制动控制单元电连接;电机控制器和超级电容均与再生制动控制单元电连接;再生控制主电路用于根据第一控制信号或第二控制信号给电机控制器供电。本发明能使得制动更加平稳。
-
公开(公告)号:CN110758106A
公开(公告)日:2020-02-07
申请号:CN201911106818.0
申请日:2019-11-13
Applicant: 北京理工大学
Abstract: 本发明公开了一种纯电动汽车制动能量回收装置及系统,包括箱体和电机,所述箱体内腔底部的左侧固定连接有复合储能系统,所述箱体内腔底部的右侧固定连接有执行机构,所述箱体内腔的右侧分别固定连接有第一效率计算模块和第二效率计算模块,所述箱体内腔的顶部固定连接有逻辑模块,所述箱体内腔的顶部且位于逻辑模块的左侧固定连接有需求功率产生模块。本发明通过设置箱体,达到放置电器设备的效果,通过复合储能系统,达到对能量储存的效果,通过执行机构,达到控制蓄电池与超级电容输入和输出功率的效果,通过第一效率计算模块和第二效率计算模块,该电动汽车可合理对能量进行分配,而且可延长纯电动汽车的续驶里程。
-
公开(公告)号:CN107138960B
公开(公告)日:2018-06-22
申请号:CN201710553131.6
申请日:2017-07-07
Applicant: 北京理工大学
Abstract: 本发明公开一种用于改善复合材料加工质量的复合加工方法及加工工具,属于复合材料机械加工、材料改性技术领域。本发明公开的复合加工方法,采用将铣刀和搅拌头一体化复合集成的加工刀具,利用复合加工刀具铣刀对工件待加工层进行一次材料去除加工,通过复合加工刀具搅拌头对铣削刚形成的加工表面立即进行搅拌摩擦二次加工。本发明公开的复合加工工具,包括铣刀部分,包括刀体、可转位铣刀片、刀片螺钉、刀垫、刀垫螺钉、凹端接口,搅拌头部分,凸端接口,固定销,锁紧滑销,锁紧螺钉,限位螺钉。本发明能够实现高速铣削和搅拌摩擦加工一体式复合加工,进而改善颗粒增强型金属基复合材料的加工质量,提高加工精度和效率。
-
公开(公告)号:CN108053478A
公开(公告)日:2018-05-18
申请号:CN201711106783.1
申请日:2017-11-10
Applicant: 北京理工大学
Abstract: 本发明公开的一种基于像素理论的颗粒增强复合材料有限元建模方法,涉及一种基于像素理论的考虑微观组织的颗粒增强复合材料有限元建模方法,属于颗粒增强复合材料的有限元建模技术领域。本发明在传统颗粒增强复合材料有限元模型材料的定义的基础上,基于像素理论的方法建立增强相颗粒几何模型,能够准确反映增强相轮廓,平衡效率和仿真结果准确性的矛盾,提高颗粒增强复合材料有限元模型仿真准确性和可靠度,进而解决颗粒增强复合材料领域工程问题。此外,本发明具有一般通用性,适用于但不限于颗粒增强复合材料的有限元建模;能够提高模型的准确性的同时极大的简化有限元的建模操作,具有简化数字化图像处理以及有限元软件建模的繁杂度的优点。
-
公开(公告)号:CN105571548B
公开(公告)日:2017-12-15
申请号:CN201610012230.9
申请日:2016-01-08
Applicant: 北京理工大学
IPC: G01B21/02
Abstract: 本发明涉及机械加工领域,具体涉及一种微细切削测量转换装置及其公差预测方法,包括伺服电机、蜗杆、蜗轮、隔板、测头、刀具、设于机床工作台上的工件以及用于加工检测的旋转机构,本发明采用的幂函数拟合预测模型,相对比于6阶多项式回归拟合预测模型,模型方程的确定系数更接近于1,拟合效果更好,精度更高;本发明拟合图的横纵坐标取对数,使得基本尺寸段0.01‑3mm被放大,能更真实清晰的反应几何平均值D与标准公差值之间的关系,能够在线完成工件的“加工‑测量”,提高了加工效率。
-
-
-
-
-
-
-
-
-