一种动态增益的在线估计方法

    公开(公告)号:CN112034704B

    公开(公告)日:2022-08-12

    申请号:CN202010732647.9

    申请日:2020-07-27

    Abstract: 本发明一种动态增益的在线估计方法,步骤如下:(1)获取被控对象的动力学模型;(2)建立被控对象的压缩函数,得到被控对象的无误差压缩形式;(3)采用微分器在线求取输出y的导数;(4)在线估计非线性被控对象的状态和输入的系数;(5)计算得到动态增益。本发明通过提出非线性函数的无误差压缩方法和动态增益的在线估计方法,涵盖了多类被控对象,包括航天器被控对象、工业被控对象等,解决了它们基于特征模型的自适应控制问题,突破了动态增益的求解问题,具有通用性。

    一种基于特征模型的自适应控制方法

    公开(公告)号:CN110687786B

    公开(公告)日:2022-07-05

    申请号:CN201910951321.2

    申请日:2019-10-08

    Abstract: 一种基于特征模型的自适应控制方法,首先获取被控对象的特征模型,然后设计特征模型的系数与状态相关的界和参数辨识的投影方法,使用投影辨识算法辨识特征模型中的未知系数变量,得到辨识值,最后根据辨识值得到控制量,进而得到下一周期被控对象的输入,完成当前周期的基于特征模型的闭环控制。本发明方法通过设计与状态相关的系数的界,并进一步设计参数辨识的投影方法,解决了特征模型的参数难以确定常数的界的问题,实现了欧拉‑拉格朗日系统基于特征模型的自适应控制。同时,方法可涵盖多类被控对象,包括航天器被控对象、先进静止无功发生器被控对象等欧拉‑拉格朗日系统,具有较好的通用性与应用前景。

    一种考虑路径约束的基于特征模型的制导方法

    公开(公告)号:CN112298615B

    公开(公告)日:2022-03-04

    申请号:CN202011126002.7

    申请日:2020-10-20

    Abstract: 一种考虑路径约束的基于特征模型的制导方法,步骤如下:1)建立航天器被控对象动力学方程,并设定路径约束;2)在第k个制导周期,通过导航测量,得到当前制导周期的状态;3)通过对动力学方程积分,计算预计航程;4)计算得到待飞航程;5)计算得到高度变化率参考量;6)建立含有高度变化率的解耦特征模型;7)利用投影梯度法或投影最小二乘法辨识系数;8)计算得到制导律;9)返回步骤2)下一个制导周期。

    一种挠性飞行器无误差压缩的特征建模方法

    公开(公告)号:CN112434370A

    公开(公告)日:2021-03-02

    申请号:CN202011264265.4

    申请日:2020-11-12

    Abstract: 本发明一种挠性飞行器无误差压缩的特征建模方法,步骤如下:1)建立挠性飞行器被控对象动力学方程;2)将挠性飞行器动力学转化为精确反馈线性化标准形式;3)求取挠性飞行器的时间尺度,4)选取采样周期T;5)建立刚体模态方程;6)建立三阶特征模型;7)给出特征模型系数的界;从步骤8)开始,在每个控制周期进行循环;8)采用投影梯度方法,或者投影最小二乘方法,辨识特征模型的系数;9)设计三阶自适应控制律;10)返回步骤8),进入下一个控制周期。

    一种基于特征模型的相平面自适应控制方法

    公开(公告)号:CN103224023B

    公开(公告)日:2015-07-08

    申请号:CN201310108763.3

    申请日:2013-03-29

    Abstract: 一种基于特征模型的相平面自适应控制方法,(1)设计喷气控制律中的限速值(2)设计喷气控制律中的步进区角速度最大值和小推力区角速度最大值以及喷气控制律中的死区阀值θD和步进阀值θv;(3)设计喷气控制律中的大推力区阀值θB;(4)根据黄金分割系数计算喷气控制律中小推力角加速度参数ac2以及大推力角加速度参数ac1;(5)根据小推力角加速度参数ac2计算喷气控制律中的步进区参数kj;根据大推力角加速度参数ac1以及其他相平面参数计算喷气控制律中的抛物线系数KX;(6)根据上述五个步骤中设计的参数,依据相平面喷气控制逻辑计算控制量,即确定发动机的喷气长度,在本采样控制周期内按照所确定的控制量对发动机进行控制。

    一种基于升阻比实时估计的自适应制导方法

    公开(公告)号:CN104634183A

    公开(公告)日:2015-05-20

    申请号:CN201410790966.X

    申请日:2014-12-18

    Abstract: 一种基于升阻比实时估计的自适应制导方法,主要通过再入飞行器制导导航与控制系统的设备信息和导航信息,按照物理原理和定义,实时计算返回舱的升阻比;根据估计出的升阻比,对再入纵向航程制导律、横向航程制导律进行实时补偿设计,从而消除或减缓升阻比偏离标称设计值对制导精度的影响。根据本方法进行再入飞行器的制导律设计可以提高制导精度和制导回路的鲁棒性,最大程度满足了大气内高速飞行器的制导需求。

    一种基于特征模型的挠性卫星控制方法

    公开(公告)号:CN102033491B

    公开(公告)日:2012-08-22

    申请号:CN201010297961.5

    申请日:2010-09-29

    Abstract: 一种基于特征模型的挠性卫星控制方法,按照挠性卫星的动力学方程,确定其时间尺度、采样时间,以及参数M和m;根据得到的各个变量确定特征模型的系数范围;利用梯度法辨识特征模型的参数;根据辨识得到的特征模型的系数设计控制律,通过控制律反馈到挠性卫星的动力学方程,控制挠性卫星姿态角。本发明引入了挠性卫星的时间尺度和采样周期,刻画了挠性卫星的变化率,解决了挠性卫星特征建模的瓶颈问题;本发明给出了挠性卫星特征模型参数范围的表达式,定性研究了特征模型的参数性质,从所给出的参数范围可以看出,特征模型参数的界与采样周期、建模误差、系统阶数、系统变化率有关,为挠性卫星基于特征模型的自适应控制奠定了理论基础;本发明适用于飞行器姿态动力学的特征建模,从而为飞行器基于特征模型的姿态控制奠定了基础。

Patent Agency Ranking