-
公开(公告)号:CN109117883B
公开(公告)日:2022-01-11
申请号:CN201810918499.2
申请日:2018-08-13
Applicant: 上海海洋大学
IPC: G06K9/62
Abstract: 本发明属于海冰监测技术领域,公开了一种基于长短时记忆网络的SAR影像海冰分类方法及系统,以多幅连续观测的海冰SAR影像数据直接作为长短时记忆网络训练输入提取特征,并在网络训练中将海冰的密集度数据作为一维特征一起参与分类网络的训练,得到兼顾空间和时间维度的海冰分类网络;考虑未知海冰密集度数据的情况下,先训练基于长短时记忆网络的海冰密集度预测模型,然后将预测的密集度数据和SAR影像图像数据集合输入训练好的海冰分类网络进行分类。本发明在SAR影像海冰的分类中考虑到时间演变过程中海冰类别变化的时间维度特征,对于相近海冰类别的识别率具有很大的提升。
-
公开(公告)号:CN113673605A
公开(公告)日:2021-11-19
申请号:CN202110972871.X
申请日:2021-08-24
Applicant: 上海海洋大学
Abstract: 本发明公开了一种海水溶解氧评估方法,其包括:(S1)获取两个需要对比海域的海水溶解氧及其相关变量,采用TP有向可视图方法对海水溶解氧及其相关变量的时间序列进行转换,得到各海域的图;海水溶解氧的相关变量包括海温以及盐度;(S2)对两个海域的图进行相似性匹配,得到匹配结果。在本发明中,TP有向可视图可以保留更多时间序列信息的转化成图,可更好的分析时间序列。GSN图相似性匹配从全局层、子图层、节点层综合计算图间相似度,使得相似度评估结果更加准确。
-
公开(公告)号:CN113326864A
公开(公告)日:2021-08-31
申请号:CN202110365966.5
申请日:2021-04-06
Applicant: 上海海洋大学
Abstract: 一种图像检索模型训练方法,该模型的损失函数其中,m是全部样本的数量;P为正样本对集合;Pi为第i个样本作查询样本时,正样本对的集合;N为负样本对集合;Ni为第i个样本作查询样本时,负样本对的集合;n为选择的负样本对数量;δ为负样本对相似度从高到底排序的顺序(1‑n);r为阈值参数,代表对负样本对优化的权重;λ、d为阈值参数,共同表示将正负样本拉开的距离;S表示相似度;Sik表示第i个样本和第k的样本的相似度;α、β为阈值参数,分别代表对正样本对损失的权重和对负样本对损失的权重。
-
公开(公告)号:CN111709928A
公开(公告)日:2020-09-25
申请号:CN202010536291.1
申请日:2020-06-12
Applicant: 上海海洋大学
Abstract: 本发明公开了一种基于视频的近岸浪高实时检测系统,解决了传统观测法运行维护成本高、对于人工的要求高、精度低的弊端,其技术方案要点是包括有通过视频采集卡实时接入近海岸监控站点的视频信号并保存至本地的视频接入与保存模块;对接入的视频信息进行推送的视频流推送模块;接收推送的视频信息并进行预处理以获得海浪特征的视频预处理模块;根据接收的视频信息及海浪特征进行浪高检测以获得浪高信息的浪高检测模块;接收推送的视频信息及浪高信息以进行展示的Web前端,本发明的一种基于视频的近岸浪高实时检测系统,检测简便智能化、运行维护成本低、预测频率高预测准确。
-
公开(公告)号:CN110400276A
公开(公告)日:2019-11-01
申请号:CN201910671108.6
申请日:2019-08-28
Applicant: 上海海洋大学
Abstract: 一种高光谱图像去噪方法,该方法根据高光谱图像数据中局部空间低秩先验、光谱低秩先验和全局光谱低秩先验,基于地物类别建立低秩矩阵恢复模型;根据不同的地物类别对高光谱图像分块;在高光谱图像局部分块内去除噪声;对整个高光谱图像空间数据和光谱数据内再一次去除噪声。
-
公开(公告)号:CN110264484A
公开(公告)日:2019-09-20
申请号:CN201910567466.2
申请日:2019-06-27
Applicant: 上海海洋大学
IPC: G06T7/12
Abstract: 本发明属于海洋遥感技术领域,公开了一种面向遥感数据的改进海岛岸线分割系统及分割方法,进行基于最佳指数的遥感影像数据波段组合选择,将选择后波段组合数据作为海岛岸线分割的输入数据;进行基于Deeplab神经网络结构的海岛岸线粗分割;并进行基于全连接条件随机场的海岛岸线优化。本发明面向遥感波段数据,使用最佳指数公式选取最适合海岛岸线分割的波段组合训练神经网络;结合深度学习模型以及概率图模型,对海岛岸线进行粗分割以及细分割;本发明分割结果得出了97.8%的MIoU值。
-
公开(公告)号:CN110197307A
公开(公告)日:2019-09-03
申请号:CN201910477316.2
申请日:2019-06-03
Applicant: 上海海洋大学
Abstract: 本发明公开了一种结合注意力机制的区域型海表面温度预测方法,步骤包括:1)、将区域内每天的SST数据处理成一个矩阵,依次按时间先后进行排列,构成矩阵序列,作为CA-ConvLSTM模型的输入;2)、对SST矩阵进行处理,通过卷积层提取各个记录点的分布特征;3)、利用注意力机制为获得的矩阵特征分配注意力权重,然后将注意力权重乘上对应的矩阵特征,得到加权特征;4)、最后,将加权特征作为ConvLSTM模型的输入,利用ConvLSTM训练预测模型,最终获得预测结果。本发明将区域内SST整理为一个矩阵,作为一个整体输入到模型中,便于模型提取SST的时间和空间相关性。
-
公开(公告)号:CN109190800A
公开(公告)日:2019-01-11
申请号:CN201810898056.1
申请日:2018-08-08
Applicant: 上海海洋大学
Abstract: 本发明公开了一种基于spark框架的海面温度预测方法,包括如下步骤:在spark框架下启动动态时间归整DTW算法,并从分布式文件系统中将数据载入到Spark集群,完成数据的预处理;将完成预处理的数据collect到本地生成类比模式和参考模式;在Spark框架下,调用Spark的工作集群,计算类比模式与参考模式的动态时间归整距离DTW;按动态时间归整DTW距离的大小排序后,取出前k个类比模式作为训练集,训练一个具有预测能力的模型;将参考模式作为预测模型的输入得到输出结果,再对输出结果进行反归一化处理得到最终预测结果。本发明通过历史海面温度时间序列数据预测出未来五天内的海面温度,有效克服了现有海面温度预报中预报效率和预报精度不高的问题。
-
公开(公告)号:CN109117883A
公开(公告)日:2019-01-01
申请号:CN201810918499.2
申请日:2018-08-13
Applicant: 上海海洋大学
IPC: G06K9/62
Abstract: 本发明属于海冰监测技术领域,公开了一种基于长短时记忆网络的SAR影像海冰分类方法及系统,以多幅连续观测的海冰SAR影像数据直接作为长短时记忆网络训练输入提取特征,并在网络训练中将海冰的密集度数据作为一维特征一起参与分类网络的训练,得到兼顾空间和时间维度的海冰分类网络;考虑未知海冰密集度数据的情况下,先训练基于长短时记忆网络的海冰密集度预测模型,然后将预测的密集度数据和SAR影像图像数据集合输入训练好的海冰分类网络进行分类。本发明在SAR影像海冰的分类中考虑到时间演变过程中海冰类别变化的时间维度特征,对于相近海冰类别的识别率具有很大的提升。
-
公开(公告)号:CN108596248A
公开(公告)日:2018-09-28
申请号:CN201810368763.X
申请日:2018-04-23
Applicant: 上海海洋大学
Abstract: 本发明涉及一种基于改进深度卷积神经网络的遥感影像分类模型,所述遥感分类模型包括以下步骤:步骤S1、基于瓶颈单元的遥感特征影像降维;步骤S2、基于分组卷积的遥感特征影像卷积多通道优化;步骤S3、基于通道洗牌的遥感特征影像特征提取能力改进;步骤S4、面向遥感影像空间位置特征的波段化处理。其优点表现在:实现了对待输入遥感影像的降维,降低深度卷积神经网络遥感影像分类模型训练时的卷积计算量;同时,针对遥感影像的空间相关性,构建通道洗牌结构,提升分组卷积阶段神经网络的特征提取能力。针对遥感影像的空间位置特征,提高了可深度卷积神经网络模型对遥感影像的空间位置特征识别度。
-
-
-
-
-
-
-
-
-