-
公开(公告)号:CN113011583A
公开(公告)日:2021-06-22
申请号:CN202110268665.0
申请日:2021-03-12
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06N3/08 , G06N3/04 , G06N20/00 , G06F16/332 , G06Q30/02
Abstract: 本说明书实施例提供一种强化学习模型的训练方法,该方法包括:获取业务环境的当前状态,其中包括上一轮交互产生的交互内容;基于该交互内容,将多个备选业务动作划分为本轮交互下的可选动作集和禁选动作集;将该当前状态输入强化学习模型,从可选动作集中选取收益预测值最大的可选动作作为本轮业务动作,如此可以避免用户被无关动作打扰,从而提升用户体验;再将该本轮业务动作施加于上述业务环境,得到该业务环境的本轮反馈,基于本轮反馈计算本轮业务动作的收益标签值,并基于该收益标签值构建其他备选业务动作的收益标签值,从而实现可以利用全量备选业务动作训练上述强化学习模型,有效加速强化学习模型的收敛。
-
公开(公告)号:CN112948885A
公开(公告)日:2021-06-11
申请号:CN202110320900.4
申请日:2021-03-25
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例提供一种实现隐私保护的多方协同更新模型的方法、装置及系统,服务器可以向每个参与方i下发第t轮公共样本的聚合结果。每个参与方i根据第t轮公共样本和聚合结果,对本地的第i模型进行第一更新。每个参与方i基于本地样本集中固定的第一私有样本及其样本标签,对第一更新后的第i模型进行第二更新。每个参与方i将用于下一轮迭代的第t+1轮公共样本,输入第二更新后的第i模型,并将输出的第二预测结果发送给服务器,以供服务器聚合对应于n个参与方的n份第二预测结果,并在下一轮迭代开始之后使用。在多轮迭代结束之后,每个参与方i可以将其第二更新后的第i模型,作为其与其它参与方协同更新的模型。
-
公开(公告)号:CN112926559A
公开(公告)日:2021-06-08
申请号:CN202110513963.1
申请日:2021-05-12
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书一个或多个实施例公开了一种人脸图像处理方法及装置。所述方法包括:获取多个第一样本人脸图像对,各第一样本人脸图像对中分别包括具有隐私信息的第一样本原始人脸图像、以及对应的具有干扰信息的第一样本目标人脸图像。然后根据各第一样本人脸图像对分别对应的图像匹配信息,确定待训练的图像编码模型对应的损失函数。进而将第一样本原始人脸图像作为输入数据、将第一样本目标人脸图像作为输出数据,并基于损失函数进行模型训练,得到图像编码模型,并利用图像编码模型对人脸图像进行隐私保护处理。
-
公开(公告)号:CN112836218A
公开(公告)日:2021-05-25
申请号:CN202110050426.8
申请日:2020-05-09
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书提供一种风险识别方法及装置和电子设备,应用于终端设备的可信执行环境。所述可信执行环境中存储有历史业务请求和风险规则。该方法包括:响应于业务客户端发起的待发送的业务请求,获取业务请求包含的用户账户和终端标识;查询历史业务请求中同样具有该用户账户和设备标识的历史目标业务请求,并对历史目标业务请求进行统计分析,得到风险指标的数值;判断风险指标的数值是否达到风险规则中设定的阈值;删除所述待发送的业务请求中携带的设备标识,并添加判断结果,由所述业务客户端将所述业务请求发送给业务服务端;以使所述业务服务端基于该判断结果执行该业务请求。由于设备标识不对外发送从而可以保护用户的个人信息。
-
公开(公告)号:CN112785157A
公开(公告)日:2021-05-11
申请号:CN202110093517.X
申请日:2021-01-22
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例提供一种风险识别方法。该方法包括:获取待识别的第一事件样本;将该第一事件样本输入针对多个风险域的风险识别系统中;该风险识别系统包括第一表征层,第二表征层和输出层;该第二表征层包括共享表征子层,以及对应该多个风险域的多个特定表征子层;该输出层包括对应该多个风险域的多个输出子层;其中,该第一表征层基于该第一事件样本的事件特征,确定该第一事件样本的第一表征向量;该第二表征层中的各个表征子层各自基于该第一表征向量,确定该第一事件样本的表征子向量;该输出层中的各个输出子层,各自基于所对应风险域的表征子向量和该共享表征子层确定出的表征子向量,确定风险预测结果。
-
公开(公告)号:CN112232827A
公开(公告)日:2021-01-15
申请号:CN202011178438.0
申请日:2020-10-29
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例提出了一种欺诈识别方法、装置和电子设备,其中,上述欺诈识别方法中,电子支付平台接收电子设备发送的资金操作请求,上述资金操作请求包括使用上述电子设备的第一用户向第二用户进行资金转移操作的请求,然后电子支付平台获取第二用户的头像,利用预先训练的神经网络模型,对第二用户的头像进行识别,获得上述第二用户的头像的欺诈识别结果。
-
公开(公告)号:CN111310196B
公开(公告)日:2020-12-04
申请号:CN202010384152.1
申请日:2020-05-09
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书提供一种风险识别方法及装置和电子设备,应用于终端设备的可信执行环境。所述可信执行环境中存储有历史业务请求和风险规则。该方法包括:响应于业务客户端发起的待发送的业务请求,获取业务请求包含的用户账户和终端标识;查询历史业务请求中同样具有该用户账户和设备标识的历史目标业务请求,并对历史目标业务请求进行统计分析,得到风险指标的数值;判断风险指标的数值是否达到风险规则中设定的阈值;删除所述待发送的业务请求中携带的设备标识,并添加判断结果,由所述业务客户端将所述业务请求发送给业务服务端;以使所述业务服务端基于该判断结果执行该业务请求。由于设备标识不对外发送从而可以保护用户的个人信息。
-
公开(公告)号:CN111738440B
公开(公告)日:2020-11-24
申请号:CN202010757517.0
申请日:2020-07-31
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 公开了一种基于领域自适应与联邦学习的模型训练方法及系统。一方面,采用联邦学习架构,使得源业务方与目标业务方可以在不彼此交互数据隐私的情况下联合训练模型,保护了双方的数据隐私。另一方面,针对目标业务领域的样本集缺乏准确标签的情况,利用源业务领域的样本集的特征与标签之间的映射关系进行迁移学习,本质上是将源业务领域下训练的模型适应到目标业务领域下。
-
公开(公告)号:CN111932041A
公开(公告)日:2020-11-13
申请号:CN202011069728.1
申请日:2020-10-09
Applicant: 支付宝(杭州)信息技术有限公司
Abstract: 本说明书实施例公开了一种基于风险识别的模型训练方法、装置及电子设备,具体方案包括:获取无样本标签的第一数据集,第一数据集包含预期具有第一类样本标签的样本数据,在该预期具有第一类样本标签的样本数据中掺杂有具有第二类样本标签的样本数据;对第一数据集预配置第一类样本标签,利用该第一数据集运行配置有第一模型参数的目标模型,生成预测值。利用损失函数判断预测值相比于第一数据集所反映的目标值的损失量,估算损失量对应的第一数据集的统计中心估值,将统计中心估值转换成统计中心期望值,利用损失量和损失量对应的统计中心期望值调整第一模型参数,直到损失量达到预设条件。
-
公开(公告)号:CN111723943A
公开(公告)日:2020-09-29
申请号:CN202010753290.2
申请日:2020-04-01
Applicant: 支付宝(杭州)信息技术有限公司
IPC: G06N20/00
Abstract: 本说明书实施例提供一种基于多标签的联邦学习方法、装置和系统,该方法包括:多个机构在进行联邦学习时,可信执行环境可以获取由多个机构提供的多个标签数据组,任一标签数据组中包括多个用户的原始标签,所述多个用户中至少存在一个用户在所述多个标签数据组中的多个原始标签不一致;在获取到多个标签数据组后,利用预设的弱监督学习算法对所述多个标签数据组进行学习训练,得到统一的目标标签数据组,目标标签数据组中包括所述多个用户的目标标签;将所述目标标签数据组发送给所述多个机构,以便由所述多个机构基于所述目标标签数据组进行联邦学习。
-
-
-
-
-
-
-
-
-