一种采用重采样递归神经网络的地铁乘客拥挤度预测方法

    公开(公告)号:CN109919387A

    公开(公告)日:2019-06-21

    申请号:CN201910198026.4

    申请日:2019-03-15

    Abstract: 本发明涉及交通数据分析领域,尤其涉及一种采用重采样递归神经网络的地铁乘客拥挤度预测方法。包括以下步骤:依据原始数据设定训练样本数据,设定拥挤度标签,依据拥挤度标签将样本数据分为n个子样本集,对子样本集进行重采样,获取重采样数列,将重采样数列输入递归神经网络模型,以训练递归神经网络模型,对递归神经网络模型测评,依据测评结果调节重采样权值,直至测评结果为及格。现有技术中,往往从训练样本数据中进行随机采样,但是不同类别的样本分布不均,从而造成递归神经网络模型对多数样本过拟合对少数样本欠拟合,从而造成预测不准确。本发明通过重采样对样本进行二次采样,使得模型充分训练,从而有效提高预测精度。

Patent Agency Ranking