基于风格转换和联合学习网络的域自适应行人再识别方法

    公开(公告)号:CN113723345B

    公开(公告)日:2023-11-14

    申请号:CN202111053962.X

    申请日:2021-09-09

    Abstract: 本发明为一种基于风格转换和联合学习网络的域自适应行人再识别方法,包括一、利用源域数据集对神经网络模型进行预训练;二、对目标域数据集中的行人图像进行风格转换;三、对每张行人图像进行预处理;四、将同一张行人图像采用两种预处理方式得到的图像输入到两个神经网络模型中提取特征,将两个高阶特征保存至两个存储器中;两个高阶特征进行聚类,得到伪标签;将同一张行人图像的两个高阶特征进行融合,融合后的高阶特征存储在联合存储器中;五、基于伪标签训练两个神经网络模型,基于联合存储器同步训练两个神经网络模型;六、重复第四、五步并在训练过程中计算两个神经网络模型的识别精度,将识别精度最佳的神经网络模型用于行人再识别。

    基于改进ConvMixer网络和动态焦点损失的视听情感分类方法

    公开(公告)号:CN115346261A

    公开(公告)日:2022-11-15

    申请号:CN202211015781.2

    申请日:2022-08-24

    Abstract: 本发明为基于改进ConvMixer网络和动态焦点损失的视听情感分类方法,包括1)采集表达情感的涉及人体面部区域的视频,从视频中提取图像序列和音频信号,将音频信号转换为梅尔倒谱系数谱图;2)构建结合邻接矩阵的ConvMixer网络,利用结合邻接矩阵的ConvMixer网络中提取视觉特征;3)利用ResNet34网络从梅尔倒谱系数谱图中提取听觉特征;4)构建特征融合与分类网络,用于将视觉特征和听觉特征进行融合,根据融合后的特征对每个视频进行情感分类;5)对网络进行训练,通过融合动态权重的焦点损失函数计算训练损失。克服了现有方法着重提取视频画面局部特征而忽略全局特征,损失函数无法使模型关注难分样本等问题。

    一种基于深度估计的RGBD图像显著性检测方法

    公开(公告)号:CN115272268A

    公开(公告)日:2022-11-01

    申请号:CN202210944652.5

    申请日:2022-08-08

    Abstract: 本发明为一种基于深度估计的RGBD图像显著性检测方法,利用深度估计用RGB特征生成估计深度图,作为原始深度图的补充,两者融合后作为深度模态的输入,融合后的深度特征为网络提供更多空间信息,帮助定位显著目标。两个模态特征利用交叉模态融合模块,将两个模态中优势部分进行互补选择,能够获得更有效的特征,具体是利用空间注意力加强特征后,使用加法和乘法两种方法融合两个模态的特征,加法利用特征互补性,乘法更加强调特征共性,再把两种方式得到的融合特征进行自适应融合,结合总损失的计算,实现端到端训练,明显提高检测精度。

    基于特征增强的车辆重识别方法

    公开(公告)号:CN114005096A

    公开(公告)日:2022-02-01

    申请号:CN202111317650.5

    申请日:2021-11-09

    Abstract: 本发明为基于特征增强的车辆重识别方法,该方法以构建具有空间注意力引导的自适应特征擦除模块和多感受野残差注意力模块的基于多注意力引导的特征增强网络,通过多感受野残差注意力在不同大小的感受野下帮助主干网络获得丰富的车辆外观特征,利用空间注意力引导的自适应特征擦除模块有选择性的擦除车辆最显著特征,使多注意力引导的特征增强网络的局部分支能够挖掘潜在局部特征,融合全局分支的全局特征和擦除分支的潜在局部特征完成车辆重识别过程。本发明方法不仅能够克服复杂的环境变化,如光照剧烈变化、障碍物遮挡而造成局部显著信息丢失的问题,而且能够满足在安全监管、智能交通系统中高效、快速的查找目标车辆的需求。

    视频图像序列中人脸微表情识别方法

    公开(公告)号:CN113496217A

    公开(公告)日:2021-10-12

    申请号:CN202110773121.X

    申请日:2021-07-08

    Abstract: 本发明为视频图像序列中人脸微表情识别方法,该识别方法包括以下内容:在微表情视频图像序列预处理之后,根据微表情的实际发生机理划分图像分块并获得微表情的浅层运动信息和深层形状信息融合特征,通过光流的共现关系和AU的发生机制构建自注意力图卷积网络的邻接矩阵A,以分块为节点、以邻接矩阵为边,构建自注意力图卷积网络,最后利用自注意力图卷积网络完成微表情的分类识别。本方法克服了现有微表情识别方法对光照噪声的鲁棒性差,特征信息提取的不充分,对微表情实际发生机理研究不深入而导致的微表情识别率低的缺陷。

    基于双生成对抗网络的两阶段表情动画生成方法

    公开(公告)号:CN111783658A

    公开(公告)日:2020-10-16

    申请号:CN202010621885.2

    申请日:2020-07-01

    Abstract: 本发明为基于双生成对抗网络的两阶段表情动画生成方法,该方法首先在第一阶段中利用表情迁移网络FaceGAN提取目标表情轮廓图中的表情特征,并将其迁移到源人脸,生成第一阶段预测图;第二阶段中利用细节生成网络FineGAN来作为补充丰富第一阶段预测图中的对表情变化贡献比较大的眼睛和嘴巴区域的细节,生成细粒度的第二阶段预测图并合成人脸视频动画,表情迁移网络FaceGAN及细节生成网络FineGAN均采用生成对抗网络实现。本申请提出两阶段生成对抗网络进行表情动画生成,第一阶段进行表情的转换,第二阶段进行图像细节的优化,通过掩模向量提取图像的指定区域,进行着重优化,同时结合局部判别器的使用,使重要部位生成效果更佳。

    一种人体骨架动作的识别方法

    公开(公告)号:CN111476181A

    公开(公告)日:2020-07-31

    申请号:CN202010282867.6

    申请日:2020-04-13

    Abstract: 本发明一种人体骨架动作的识别方法,涉及用于识别图形的方法,是一种结合时空注意力与图卷积网络的人体骨架动作的识别方法,充分挖掘不同特征信息的多样性和互补性,利用注意力机制自适应地调整空间结构各关节点的权重值和视频序列各帧的重要性,使用图卷积网络进行人体骨架的动作识别,克服了人体骨架的动作识别方法的现有技术,均存在无法更好地捕获时空特征信息,容易对人体较难动作的识别出现错误的缺陷。

    一种图像显著性目标检测方法

    公开(公告)号:CN111209918A

    公开(公告)日:2020-05-29

    申请号:CN202010008328.3

    申请日:2020-01-06

    Abstract: 本发明是一种图像显著性目标检测方法,涉及图像分析的区域分割,是基于多图模型先验和短连接网络优化的图像显著性检测方法,该方法是对每张输入图像利用颜色和位置信息,计算KNN图模型和K正则图模型,得到在KNN图模型下的显著图S1和在K正则图模型下的显著图S2,再将KNN图模型和K正则图模型进行像素级别的融合,得到原图像的初始显著图S3,利用短连接网络优化初始显著图S3,获得原图像的最终的显著图Sfinal,完成图像显著性目标检测,克服了图像显著性目标检测的现有技术中存在的显著目标检测不完整、当前景背景颜色相似时算法检测不准确的缺陷。

    对图像进行美学评价的多特征融合方法

    公开(公告)号:CN106778788B

    公开(公告)日:2019-11-12

    申请号:CN201710025626.1

    申请日:2017-01-13

    Abstract: 本发明对图像进行美学评价的多特征融合方法,涉及一般的图像数据处理的图像分析,步骤是:输入彩色RGB图像I,并进行显著区域检测得到主体区域和背景区域;彩色RGB图像I在不同颜色空间的特征向量提取:包括提取色彩调和特征向量,提取构图特征向量,提取颜色特征向量,提取清晰度特征向量,提取纹理特征向量,提取DCT统计特征向量共六类特征向量;将提取的六类特征向量融合后利用SVM分类器将图像按美学分数高低分为两类,实现图像的美学评价,克服了现有技术利用多特征融合方法进行图像美学评价时,存在对于颜色复杂图像的美学评价效果不好,不能很好地适用于各种类型图像美学评价的缺陷。

    一种图像缩放方法
    30.
    发明授权

    公开(公告)号:CN106530232B

    公开(公告)日:2019-09-06

    申请号:CN201610987694.1

    申请日:2016-11-10

    Abstract: 本发明一种图像缩放方法,涉及应用电子设备进行图像缩放的方法,是一种基于阈值与概率的图像快速缩放方法,分为两个过程,A.径向基函数神经网络模型训练过程;B.需要进行缩放的被测试图像的缩放过程。本发明方法使用径向基函数神经网络进行机器学习的方法求阈值,将需要进行缩放的图像分成保护区域与非保护区域,在缩放时使用依概率随机缩放,克服了现有技术无法在保证图像缩放效果的同时又能满足实时的图像缩放速度的缺陷。

Patent Agency Ranking