-
公开(公告)号:CN118334351A
公开(公告)日:2024-07-12
申请号:CN202410749519.3
申请日:2024-06-12
Applicant: 广东工业大学
IPC: G06V10/26 , G06N3/0464 , G06N3/0985 , G06V10/44 , G06V10/776 , G06V10/80
Abstract: 本发明公开了一种基于深度学习的指针仪表读数识别方法,包括:获取原始指针仪表图像并进行预处理,获得处理后的指针仪表数据集;构建初始指尺提取网络模型,基于处理后的指针仪表数据集对指尺提取网络模型进行训练,获得目标指尺提取网络模型;基于训练后的指尺提取网络模型对待识别指针仪表图像进行识别,获得无背景指针与尺度仪表的图像识别结果。本发明采用深度学习机器视觉技术代替人工阅读,不仅提高了工作场所的安全性,降低了人力资源的耗费,而且通过自动化数据收集过程提高了效率和准确性。
-
公开(公告)号:CN118314442A
公开(公告)日:2024-07-09
申请号:CN202410741672.1
申请日:2024-06-11
Applicant: 广东工业大学
Abstract: 本发明公开了一种基于深度学习的输电杆塔异物隐患识别方法,包括:构建输电杆塔异物原始数据集并进行预处理,获得处理后的输电杆塔异物数据集;构建基于深度学习的输电杆塔异物隐患识别模型,基于处理后的输电杆塔异物数据集对输电杆塔异物隐患识别模型进行训练,获得训练后的输电杆塔异物隐患识别模型;基于训练后的输电杆塔异物隐患识别模型对输电杆塔中的异物进行识别,获得识别结果。本发明有效提升了在复杂环境下的异物检测准确率和系统的计算效率,还增强了模型在处理不规则和多尺度特征时的适应性和鲁棒性,显著提高了输电杆塔异物隐患别模型的实用性和可靠性。
-
公开(公告)号:CN118314053A
公开(公告)日:2024-07-09
申请号:CN202410741565.9
申请日:2024-06-11
Applicant: 广东工业大学
IPC: G06T5/73 , G06N3/0464 , G06N3/082 , G06T5/60
Abstract: 本发明公开了一种基于神经网络的对无人机巡检航拍图像去雾方法,属于图像处理领域,该方法包括以下步骤:基于无人机巡检航拍图像构建图像数据集;构建启发式感知去雾神经网络,基于图像数据集对启发式感知去雾神经网络进行训练得到训练好的启发式感知去雾神经网络;将待去雾处理的无人机巡检航拍图像输入训练好的启发式感知去雾神经网络进行处理得到无雾清晰航拍图像。本发明能够在去雾的同时尽可能地保留原始图像中的细节和纹理,给巡检工作人员对去雾图像的分析工作带来便利。
-
-