-
公开(公告)号:CN117115170A
公开(公告)日:2023-11-24
申请号:CN202311385351.4
申请日:2023-10-25
Applicant: 安徽大学 , 中国电子科技集团公司第三十八研究所
IPC: G06T7/00 , G06N3/088 , G06V10/774 , G06V10/80 , G06V10/82
Abstract: 本发明公开了一种无监督域自适应SAR舰船检测方法及系统,包括以下步骤:获取光学舰船图像和SAR舰船图像;构建UDA‑SARDet模型;将所述光学舰船图像和所述SAR舰船图像作为所述UDA‑SARDet模型的输入数据进行训练与测试;利用通过测试的所述UDA‑SARDet模型完成对SAR图像舰船检测。本发明使用未标注的SAR舰船图像和现有的已标注的光学数据集,高效完成SAR图像的舰船检测任务。同时设计全新的网络模型结构和IoU损失函数,解决了SAR图像舰船目标多尺度、特征少、信息容易丢失等问题,提升了模型的检测性能。
-
公开(公告)号:CN115546555A
公开(公告)日:2022-12-30
申请号:CN202211274361.6
申请日:2022-10-18
Applicant: 安徽大学 , 中国电子科技集团公司第三十八研究所
IPC: G06V10/764 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/04 , G06N3/08
Abstract: 本发明提供一种基于混合表征学习增强的轻量化SAR目标检测方法,属于SAR图像目标检测技术领域,包括以下步骤:构建用于SAR图像舰船目标识别的HRLE‑SARDet网络模型;将待检测的舰船目标的SAR图像数据输入至训练后的HRLE‑SARDet网络模型中,输出获得目标检测结果。本发明提出了一种基于混合表征学习增强的轻量化SAR目标检测算法HRLE‑SARDet,从更加均衡的角度解决SAR图像舰船目标检测的问题,在大大减小参数量和计算量的同时,检测精度也得到一定保证和提升。
-
公开(公告)号:CN115240078A
公开(公告)日:2022-10-25
申请号:CN202210723547.9
申请日:2022-06-24
Applicant: 安徽大学 , 中国电子科技集团公司第三十八研究所
IPC: G06V20/13 , G06V10/764 , G06V10/77 , G06V10/774 , G06V10/82 , G06N3/04 , G06N3/08
Abstract: 本发明提供一种基于轻量化元学习的SAR图像小样本目标检测方法,包括:构建轻量化元特征提取器模块,根据轻量化元特征提取器模块,从输入的待查询SAR图像中提取出三个不同尺度的查询元特征;将带有标签的新类目标样本的支持图像输入到重加权模块中,输出三组与查询图像对应的重加权向量;构建基于transformer编码器的元特征聚合模块;将查询元特征和重加权向量通过元特征聚合模块重新校准;通过三个预测层分别对校准后的查询元特征和重加权向量进行预测,获得新类目标预测结果。本方法能在SAR图像目标新类仅有少量标注数据的情况下,达到更优的目标检测效能。
-
公开(公告)号:CN119399218A
公开(公告)日:2025-02-07
申请号:CN202510016832.0
申请日:2025-01-06
Applicant: 安徽大学
IPC: G06T7/10 , G06T5/80 , G06V10/40 , G06V10/764 , G06V20/10
Abstract: 本发明涉及一种基于风格转换的跨场景高光谱图像分割方法。本发明包括以下步骤;构建跨场景高光谱图像分割数据集;构建多视角信息融合分割网络;构建基于风格转换的跨场景高光谱图像分割网络;训练并测试基于风格转换的跨场景高光谱图像分割网络。与现有技术相比,本发明通过跨场景高光谱图像分割网络,解决了现有高光谱分类任务中,由于不同卫星高光谱图像之间存在风格差异,导致难以将源域训练模型迁移至目标域数据集的问题。此外,本发明采用多视角信息融合分割网络以聚合高光谱图像的空谱信息,从而实现了将源域卫星数据上训练的模型有效迁移至目标域卫星数据的创新方法。
-
公开(公告)号:CN119006930A
公开(公告)日:2024-11-22
申请号:CN202411455790.2
申请日:2024-10-18
Applicant: 安徽大学 , 中国电子科技集团公司第三十八研究所
IPC: G06V10/764 , G06N3/0464 , G06N3/0895 , G06V10/25 , G06V10/40 , G06V10/82 , G06V20/60
Abstract: 本发明公开了一种长尾分布细粒度飞机识别方法,包括:设计动态特征幻觉模块,基于动态特征幻觉模块合成幻觉样本来引入额外的数据方差,增强特征空间中尾部类别的表示,得到长尾分布尾部类别样本数据;设计对比学习模块,基于对比学习模块通过最大化类间距离和最小化类内距离提取长尾分布尾部类别样本数据的判别特征,根据判别特征对遥感图像中飞机目标的细粒度目标进行检测,获得检测结果。本发明通过动态特征幻觉模块合成幻觉样本来引入额外的数据方差,增强了特征空间中尾部类别的表示,通过最大化类间距离和最小化类内距离来提取判别特征,实现了对飞机的准确识别。
-
公开(公告)号:CN119006798A
公开(公告)日:2024-11-22
申请号:CN202411455746.1
申请日:2024-10-18
Applicant: 安徽大学 , 中国电子科技集团公司第三十八研究所
IPC: G06V10/25 , G06N3/0455 , G06N3/0464 , G06V10/74 , G06V10/82
Abstract: 本发明公开了基于上下文感知和高斯流表征的SAR图像小样本目标检测系统及方法,属于目标识别技术领域,系统包括:图像采集模块、上下文感知增强模块、流形类分布估计模块、类平衡差分聚合模块和余弦解耦模块;图像采集模块用于获取待查询SAR图像;上下文感知增强模块将最具语义信息代表的支持特征提炼为支持类原型,并得到原始查询特征;流形类分布估计模块将支持特征转换为复杂的类分布;类平衡差分聚合模块基于类分布将不同类别的原始查询特征和支持特征进行深度语义特征聚合得到聚合后查询特征;余弦解耦模块利用一个经过特征归一化、余弦相似度量和可学习缩放因子处理的分类分支处理原始查询特征和聚合后查询特征,得到目标识别结果。
-
公开(公告)号:CN118941973A
公开(公告)日:2024-11-12
申请号:CN202411434113.2
申请日:2024-10-15
Applicant: 安徽大学 , 中国电子科技集团公司第三十八研究所
Abstract: 本发明公开了基于多任务强化学习自动剪枝方法的SAR舰船目标检测方法及系统,涉及SAR舰船目标检测领域,其中方法包括:采集包含待检测目标舰船的SAR图像;设计多任务强化学习自动剪枝方法;基于多任务强化学习自动剪枝方法,改进传统SAR舰船目标检测模型,得到最终模型;利用最终模型对SAR图像进行检测,识别其中的舰船。本发明通过多任务强化学习自动剪枝方法优化SAR舰船目标检测,有效减少模型参数量和计算量,同时保持高检测精度,增强模型在边缘设备上的应用能力。
-
公开(公告)号:CN117689579A
公开(公告)日:2024-03-12
申请号:CN202311704091.2
申请日:2023-12-12
Applicant: 安徽大学
IPC: G06T5/73 , G06T5/50 , G06N3/0464 , G06N3/084 , G06N3/09
Abstract: 本发明涉及一种渐进式双解耦的SAR辅助遥感影像厚云去除方法,所述方法包括以下步骤:获取厚云遮挡光学遥感影像、无云参考影像和SAR影像三元数据集;构建渐进式双解耦的SAR辅助遥感影像厚云去除模型;训练渐进式双解耦的SAR辅助遥感影像厚云去除模型;待厚云去除的厚云遮挡光学遥感影像及对应SAR影像数据的获得及预处理;光学遥感影像厚云去除结果的获得。与现有技术相比,通过构建SAR和光学影像渐进式融合模块,充分利用两种模态间的互补信息,加强对光学影像缺失信息的补充和对SAR影像中噪声、形变的抑制。同时本发明设计的频域和空域双解耦特征处理架构,使得去云影像在光谱信息和结构信息的保持上均表现优异。
-
公开(公告)号:CN114565860B
公开(公告)日:2022-11-11
申请号:CN202210198708.7
申请日:2022-03-01
Applicant: 安徽大学 , 中国电子科技集团公司第三十八研究所
Abstract: 本发明公开了一种多维度增强学习合成孔径雷达图像目标检测方法,涉及目标检测技术领域,设计一种具有语义关系的复制粘贴进行数据增强的方法,对SAR目标样本进行语义扩充,提升样本量,降低模型过拟合,引入无锚框检测框架作为基准网络,降低模型的参数量和计算复杂度,提高推理速度;本发明提供的一种多维度增强学习合成孔径雷达图像目标检测方法,以无锚框目标检测框架CenterNet2作为基准,设计了一种特征增强轻量级骨干LWBackbone,降低模型的参数量同时有效提取SAR目标显著特征,并提出混合域注意力机制CNAM,有效抑制陆地复杂背景干扰,突出目标区域,利用感受野增强检测头模块RFEHead,设计不同空洞率卷积增强感受野,提升检测头的多尺度感知性能。
-
公开(公告)号:CN114529836B
公开(公告)日:2022-11-08
申请号:CN202210170355.X
申请日:2022-02-23
Applicant: 安徽大学 , 中国电子科技集团公司第三十八研究所
Abstract: 本发明提供一种SAR图像目标检测方法,包括:为了解决SAR目标轮廓不清晰和多尺度问题,所述SAR图像目标检测网络的基准网络采用YOLOX网络,引入了无锚框的检测框架,在此基础上对其骨干网络进行了重新的轻量化设计,即NLCNet网络,包括对网络尾部的SE模块进行了删除,并对深度可分离卷积进行了重新的堆叠,同时在网络尾部使用了大的卷积核,从而获取图像的全局信息;针对SAR目标的强散射特性,在骨干网络中设计了一种新的位置注意力机制,细节是在不同空间方向上,将SE模块的全局池化操作替换为两个一维池化操作,形成两个独立的分支,能够更好的在通道注意力中添加位置信息来抑制背景杂波,从而更加准确的识别和定位目标;该方法具有较快的检测速度和精度。
-
-
-
-
-
-
-
-
-