-
公开(公告)号:CN110674390B
公开(公告)日:2022-05-20
申请号:CN201910747703.3
申请日:2019-08-14
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院计算技术研究所
IPC: G06F16/9535 , G06F16/9536
Abstract: 本发明公开了一种基于置信度的群体发现方法及装置,所述方法包括:步骤1,设置群体的约束条件,基于所述约束条件生成群体的候选用户集及候选网络;步骤2,基于所述候选用户集及所述候选网络综合得到每个候选用户属于该群体的置信度;步骤3,根据所述候选用户的置信度,与预先设置的置信度阈值进行比较,发现新种子用户和新候选用户;步骤4,获取新种子用户,重复执行步骤1‑4直到达到预先设置的迭代次数。
-
公开(公告)号:CN113132383A
公开(公告)日:2021-07-16
申请号:CN202110421317.2
申请日:2021-04-19
Applicant: 烟台中科网络技术研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及大数据技术领域。本发明公开了一种网络数据采集系统,该系统包括服务器,服务器包括:任务下发模块,用于创建用户信息获取任务,将用户信息获取任务分配至不同的任务池,计算任务池优先级,根据任务下发规则,得到并传输具有优先级参数的用户信息获取任务;数据解析模块,与任务下发模块数据连接,用于获取来自中间代理服务端的用户信息流量数据,数据解析模块构建报文解析神经网络模型,将待解析报文信息输入训练后报文解析神经网络模型,判断待解析报文信息中是否包括指定用户信息并提取。通过设置任务优先级,优先处理重要的任务,提高任务处理效率。本公开实施例还公开了一种网络数据采集方法。
-
公开(公告)号:CN112836493A
公开(公告)日:2021-05-25
申请号:CN202011404000.X
申请日:2020-12-04
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F40/226 , G06F40/284 , G06F16/33
Abstract: 本发明公开了一种转写文本校对方法及存储介质,包括,基于预先构建的校对样本库对待校对文本按照不同文本粒度进行分析校对,获得对应的候选方案集;根据所述候选方案集确定校对方案,并通过所述校对方案确定校对结果。本发明方法基于预先构建的校对样本库对待校对文本按照不同文本粒度进行分析校对,获得对应的候选方案集;根据所述候选方案集确定校对方案,由此从不同的文本粒度出发确定校对方案,提高了转写文本的准确性和语义的合理性。
-
公开(公告)号:CN112632597A
公开(公告)日:2021-04-09
申请号:CN202011420230.5
申请日:2020-12-08
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种数据脱敏方法、装置可读存储介质,其中方法包括:根据获取的用户提交的数据文件通过预先训练的标注模型对所述数据文件中的敏感数据进行标注,以获得标注文件;利用预设评测规则对与所述标注文件的文件类型相匹配的脱敏算法进行评测;根据用户从评测结果中选取的脱敏算法完成对所述标注文件的脱敏。本发明利用预设评测规则对与标注文件的文件类型相匹配的脱敏算法进行评测;根据用户从评测结果中选取的脱敏算法完成对标注文件的脱敏,由此可以通过规则评测和用户选择确定对应的脱敏算法,具有广泛的适用性。
-
公开(公告)号:CN112085614A
公开(公告)日:2020-12-15
申请号:CN202010778007.1
申请日:2020-08-05
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06Q50/00 , G06F16/9536
Abstract: 一种基于时空行为数据的跨社交网络虚拟用户身份对齐方法,主要步骤为:1)预处理用户在社交网络上产生的时空行为数据,生成用户时空行为序列;2)基于时空行为序列数据定义并计算社交网络间任意两用户的相似度;3)构建以社交网络用户为节点的二部图,相同社交网络用户节点间无边,不同社交网络用户节点间边的权重等于用户相似度;4)计算二部图的最大权匹配;5)基于最大权匹配结果生成虚拟身份对齐结果。本发明能够为全方位分析用户在社交网络中扮演的角色、准确估计用户真实属性提供重要理论基础与技术支撑,所需要数据在现实社交网络中易于获取,计算过程易于通过分布式框架进行,可以在大规模复杂网络中快速做到虚拟用户身份对齐。
-
公开(公告)号:CN110059181A
公开(公告)日:2019-07-26
申请号:CN201910202727.0
申请日:2019-03-18
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/35
Abstract: 本发明属于文本分类领域,具体涉及一种面向大规模分类体系的短文本标签方法、系统、装置,旨在为了解决有限数据情况下面向大规模分类体系的短文本标签系统的稳定性不高的问题。本发明方法包括:获取待分类的第一短文本信息集合,并基于正向最大匹配分词和word2vec词向量表示技术进行预处理得到第二短文本信息集合;基于规则的分类方法、有监督的神经网络分类方法,对第二短文本信息集合进行二分类后进行短文本过滤,并基于同样的分类方法进行各短文本的第一、二级分类标签,基于半监督学习的标签传播方法进行各短文本的第三、四级分类标签。本发明在有限数据情况下保证了面向大规模分类体系的短文本标签系统的稳定性。
-
公开(公告)号:CN118520929A
公开(公告)日:2024-08-20
申请号:CN202411003497.2
申请日:2024-07-25
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06N3/09 , G06N3/0455 , G06F40/194
Abstract: 本发明提供一种文本相似度确定模型的训练方法及文本相似度计算方法,属于计算机技术领域,该训练方法包括:获取第一数据集和第二数据集;第一数据集中包括至少一个短文本数据对;第二数据集中包括至少一个目标文本数据对,目标文本数据对中的两个目标文本数据至少一个为长文本数据;基于句向量对比模型,获取第二数据集中各目标文本数据的关键表述;句向量对比模型是基于第一数据集和第一损失函数对第一预训练模型训练得到的;基于各关键表述和第二损失函数,对第二预训练模型进行训练,得到文本相似性确定模型。通过在判定过程中引入短文本和长文本,提升了文本相似度确定模型输出结果的准确性。
-
公开(公告)号:CN114817516B
公开(公告)日:2024-08-09
申请号:CN202210448769.4
申请日:2022-04-26
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/335 , G06F16/35 , G06F16/951 , G06F40/242 , G06F40/279 , G06F40/30 , G06N3/088
Abstract: 本发明涉及一种零样本条件下基于逆向匹配的画像映射方法,包括在数据特征标签和画像标签两个不同体系间建构双相关文本语料库,使用逆向匹配对语料库进行筛选修正;通过人工标注构建分类语料库,并训练模型建立画像体系间的映射关系;采用基于持续响应衰减的更新机制,并结合标签历史状态对时序变化的画像相关更新数据进行修正。本方法从扩展数据的角度出发,采用基于逆向匹配的文本库构建方法,引入与原始标签相关的外部文本数据扩展并增强标签的语义表达,再引入与用户画像相关的外部数据进行标注建立扩展标签和标注数据之间的联系,从而挖掘出原始特征标签隐含的丰富含义,达到从少量标签序列中计算目标画像的目的。
-
公开(公告)号:CN115034286B
公开(公告)日:2024-07-02
申请号:CN202210435266.3
申请日:2022-04-24
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/24 , G06F18/214 , G06N3/0455 , G06N3/084
Abstract: 本发明公开了一种基于自适应损失函数的异常用户识别方法和装置,其中,该方法包括:获取web系统的用户行为日志数据样本,并将用户行为日志数据样本向量化,得到无标签数据样本和有标签数据样本;进行数据预处理得到训练数据集;基于训练数据集的输入特征训练第一自编码器模型,并基于第一自编码器模型构造无标签数据样本损失函数和有标签数据样本损失函数;迭代优化第一自编码器模型并构造异常用户检测优化问题函数,得到第二自编码器模型;基于第二自编码器模型,对无标签数据样本进行异常点检测,以识别异常用户。本发明解决实际业务场景中,无标签数据中存在异常点,采用固定损失函数难以提高准确率,误报率高的技术问题。
-
公开(公告)号:CN118014049A
公开(公告)日:2024-05-10
申请号:CN202410177798.0
申请日:2024-02-08
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院自动化研究所
IPC: G06N3/09 , G06N3/0455 , G06F18/22 , G06F18/2431 , G06F40/30 , G06V20/70 , G06V10/40 , G06V10/82
Abstract: 本发明提供一种图文互生模型的训练方法,该方法包括:基于模态自感单元从样本模态数据中提取自感信息;模态自感单元基于自注意力网络通过多任务有监督训练得到;基于图文编码器对自感信息进行编码,得到隐空间特征,并对隐空间特征进行多模态扩散处理,得到扩散后的目标模态类型的隐空间特征;基于图文解码器对自感信息和扩散后的目标模态类型的隐空间特征进行解码,得到解码信息;根据解码信息和多任务损失函数对图文编码器和图文解码器进行训练,得到图文互生模型;目标损失包括重建损失、图像类的理解辅助任务对应损失和文本类的理解辅助任务对应损失确定。本发明所述方法提高了图文互生对应模型的性能和可适配性。
-
-
-
-
-
-
-
-
-