-
公开(公告)号:CN118747507A
公开(公告)日:2024-10-08
申请号:CN202410860737.4
申请日:2024-06-28
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种基于参数高效模块和多教师知识蒸馏的知识蒸馏方法,所述方法包括:获取下游任务数据集,根据预先构建的参数高效性多教师模型生成多个子教师模型,对每个子教师模型进行微调,得到多个微调子教师模型;根据下游任务数据集对待训练的学生模型进行训练,根据下游任务数据集和多个微调子教师模型生成该次训练的监督信号,根据监督信号和学生模型在该次训练过程中得到的训练结果,更新参数,当达到预设训练条件时,得到并输出训练完成的学生模型;获取目标处理数据,将目标处理数据输入到训练完成的学生模型,输出目标结果。本发明可以在训练学生模型时兼顾效率和准确率,从而通过训练好的学生模型生成准确的目标结果。
-
公开(公告)号:CN117743869B
公开(公告)日:2024-05-17
申请号:CN202410179740.X
申请日:2024-02-18
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F18/22 , G06F18/213 , G06N3/0464 , G06N3/0442 , G06N3/045 , G06N3/08
Abstract: 本发明公开了一种内容发现方法、系统、终端及存储介质,其中,所述方法包括:获取目标品牌信息和目标用户内容生成信息;将视频内容信息输入到视频编码模型中得到视频特征向量,将文本内容信息输入到文本编码模型中得到文本特征向量,将目标品牌信息输入到品牌编码模型中得到品牌语义;采用预先训练完成的得分函数生成目标用户内容生成信息与目标品牌信息的相似度;获取相似度,根据预设的选取阈值从所有的目标用户内容生成信息中选取目标内容信息。本发明通过所述方法,解决了采用单模态的内容发现方法时存在着由于仅利用了图像资料而忽略了文本、话题标签等多模态信息或只利用神经网络提取图像特征而无法利用视频中语义信息的问题。
-
公开(公告)号:CN116246699B
公开(公告)日:2024-04-26
申请号:CN202211105940.8
申请日:2022-09-07
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G16B20/00 , G16B40/00 , G06F16/36 , G06N3/0464
Abstract: 本发明公开了一种基于知识图谱的合成致死预测方法、设备及存储介质,该方法包括:基于知识图谱卷积网络获得第一基因特征;根据合成致死相互作用网络获得第二基因特征;计算所述第一基因特征和所述第二基因特征的向量内积,预测基因对的合成致死概率。由此解决了当前需要人工设计基因特征,以及无法通过建模合成致死相互作用背后机制的问题,在提升基因对的合成致死预测性能的同时,还提高了模型的可解释性。
-
公开(公告)号:CN115330398A
公开(公告)日:2022-11-11
申请号:CN202211264844.8
申请日:2022-10-17
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种基于强化学习的量化模型训练方法、系统、终端及介质,能够根据交易环境数据动态生成交易策略和交易策略的价值数据从而扩展并更新蒙特卡洛树,再根据蒙特卡洛树搜索路径评估量化目标的完成情况,将评估结果作为奖励值反向更新训练量化模型,训练后的量化模型能够根据交易环境数据动态生成交易策略。与现有技术相比,不用人为设定奖励值,而是通过蒙特卡洛树来自动生成奖励值以更新量化模型,使得量化模型优化效果好、鲁棒性高。
-
公开(公告)号:CN114706513A
公开(公告)日:2022-07-05
申请号:CN202210413350.5
申请日:2022-04-20
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种基于unity3D和手部运动捕捉的VR化学实验室实施方法与系统,方法包括:通过建模软件构建VR实验场景中的模组和化学实验室模型;通过unity3D引擎构建所述VR实验场景中实验所需的虚拟环境;识别用户的手部初始位置,输入用户手部的初始位置坐标与VR实验场景中的手部模型匹配,将手部动作实时映射到所述VR实验场景中的手部模型;根据用户的操作弹出相应的文字和语音提示,指导实验者操作。本发明通过使用VR设备、unity3D引擎构建了虚拟化学实验室,将学生置入原有课堂无法实现的场景中,促进学生对知识的深入理解,操作者可以在虚拟化学实验室里通过硬件交互的手段来对实验器材进行操作,提高训练效果,加深对实验的理解,同时减少成本,提高安全性。
-
公开(公告)号:CN111291890B
公开(公告)日:2021-01-01
申请号:CN202010399728.1
申请日:2020-05-13
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供了一种博弈策略优化方法、系统及存储介质,该博弈策略优化方法包括建立基于最大熵的策略递度算法步骤和多智能体最优反应策略求解步骤。本发明的有益效果是:本发明采用中心化训练和分散式执行的方式,提高动作估值网络的准确性,同时引入了全局基线奖励来更准确地衡量智能体的动作收益,以此来解决人博弈中的信用分配问题。同时引入了最大熵方法来进行策略评估,平衡了策略优化过程中的探索与利用。
-
公开(公告)号:CN111260040A
公开(公告)日:2020-06-09
申请号:CN202010370070.1
申请日:2020-05-06
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供了一种基于内在奖励的视频游戏决策方法,包括以下步骤:S1、获取视频游戏模拟环境;S2、构建神经网络模型;S3、设计内在奖励模型;S4、将内在奖励模型与构建的神经网络模型结构结合;S5、通过模拟环境获取游戏的记录;S6、通过获取的游戏记录,更新神经网络模型;S7、循环训练神经网络模型直至收敛。本发明的有益效果是:较好的解决了三维场景中较为常见的缺乏环境反馈奖励值的问题。
-
公开(公告)号:CN118982064B
公开(公告)日:2025-03-11
申请号:CN202411473105.9
申请日:2024-10-22
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06N3/098 , G06N3/0464
Abstract: 本申请公开了去中心化的联邦学习方法、系统及相关设备,涉及计算机技术领域,包括:联邦学习的组织者和参与者加入区块链;组织者将参与者划分为普通节点和委员会节点;各节点基于区块链获取联邦学习任务配置信息和待训练的全局模型并进行本地模型更新获得前一轮次训练完成后的本地模型;普通节点对前一轮次训练完成后的本地模型进行训练获得当前轮次的本地训练模型并上传至区块链;委员会节点通过区块链获取本地训练模型以确定普通节点的贡献度评分及当前轮次训练完成后的全局模型,并确定委员会节点对应的贡献度评分;响应于触发委员会节点更新事件,组织者重新进行节点身份划分。如此,有利于提高联邦学习过程中模型训练的准确性。
-
公开(公告)号:CN118246556A
公开(公告)日:2024-06-25
申请号:CN202410668413.0
申请日:2024-05-28
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06N5/04 , G06N3/0455 , G06N3/0499 , G06N3/092 , G06F16/35 , G06F8/41
Abstract: 本发明公开了一种基于强化学习的类型推断方法及装置,包括:获取运行环境数据和代码数据,并对所述运行环境数据和所述代码数据进行预处理,得到合法类型序列及类型流序列;根据所述合法类型序列及所述类型流序列,进行带类型标注的代码生成任务的监督训练;根据生成的带类型标注的目标代码,进行静态反馈的强化学习训练,得到强化后的代码生成模型。本发明提出了使用基于生成的方法来预测类型,并通过强化学习来增强生成模型的类型预测的准确性,解决了现有的类型推断模型的预测结果与实际应用偏差较大的问题。
-
公开(公告)号:CN117035074B
公开(公告)日:2024-02-13
申请号:CN202311286288.9
申请日:2023-10-08
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种基于反馈强化的多模态知识生成方法及装置,包括:构建多模态模型,在多模态知识生成任务中将人类反馈引入所述多模态模型,形成的监督数据用于训练预先设立的奖励回报模型;将所述监督数据输入奖励回报模型进行训练,使得奖励回报模型从所述监督数据中学习到人类的理解;利用内外探索相结合的强化学习方法微调所述多模态模型,使得多模态模型能够学习到人类偏好,生成更自然的知识;本发明具有人类反馈知识的强化学习方法应用于多模态知识生成任务中,解决了多模态知识生成任务缺乏人类反馈监督的不足,并引入基于内外探索相结合的强化学习微调技术,有效缓解多奖励稀疏问题。
-
-
-
-
-
-
-
-
-