一种用于源代码漏洞检测的代码属性图压缩方法及装置

    公开(公告)号:CN113987522A

    公开(公告)日:2022-01-28

    申请号:CN202111637333.1

    申请日:2021-12-30

    Abstract: 本发明公开了一种用于源代码漏洞检测的代码属性图压缩方法及装置,所述方法包括如下步骤:根据代码属性图计算基于前K跳邻居的节点邻域信息增益;对节点邻域信息增益进行局部归一化处理;选择归一化处理后的节点邻域信息增益低的节点组成候选删除节点集合,判断候选删除节点集合中是否存在割点,并将割点从候选删除节点集合中移除,最终得到删除节点集合;从代码属性图中去掉删除节点集合中的节点以及与节点相连的边,得到代码属性压缩图。本发明通过计算节点的前K跳邻居增益信息,选择增益信息低的节点进行删除同时保证压缩图的连通性,在尽可能保持代码属性图的节点属性和结构特征的情况下降低其复杂度,从而提高后续模型训练的时空效率。

    一种用于源代码漏洞检测的代码属性图压缩方法及装置

    公开(公告)号:CN113987522B

    公开(公告)日:2022-05-03

    申请号:CN202111637333.1

    申请日:2021-12-30

    Abstract: 本发明公开了一种用于源代码漏洞检测的代码属性图压缩方法及装置,所述方法包括如下步骤:根据代码属性图计算基于前K跳邻居的节点邻域信息增益;对节点邻域信息增益进行局部归一化处理;选择归一化处理后的节点邻域信息增益低的节点组成候选删除节点集合,判断候选删除节点集合中是否存在割点,并将割点从候选删除节点集合中移除,最终得到删除节点集合;从代码属性图中去掉删除节点集合中的节点以及与节点相连的边,得到代码属性压缩图。本发明通过计算节点的前K跳邻居增益信息,选择增益信息低的节点进行删除同时保证压缩图的连通性,在尽可能保持代码属性图的节点属性和结构特征的情况下降低其复杂度,从而提高后续模型训练的时空效率。

    基于信息增强调用序列的API推荐方法及装置

    公开(公告)号:CN114416159B

    公开(公告)日:2022-07-22

    申请号:CN202210335647.4

    申请日:2022-04-01

    Abstract: 本发明公开了一种基于信息增强调用序列的API推荐方法及装置,方法包括解析源代码提取得到原始API调用序列,根据原始API调用序列获取用户自定义API和非自定义API的对应关系,得到增强API调用序列;将原始API调用序列和增强API调用序列分别放入神经网络嵌入层,得到原始序列表示向量和第一增强序列表示向量,将第一增强序列表示向量输入神经网络第一编码器,得到第二增强序列表示向量,并和原始序列表示向量进行信息融合得到API新向量表示;将API新向量表示输入神经网络第二编码器中,得到API序列向量并输入相似度计算模块,得到每一个候选API的概率。本发明可解决原始API调用序列信息不足和用户自定义API携带信息过少影响推荐准确率的问题。

    基于信息增强调用序列的API推荐方法及装置

    公开(公告)号:CN114416159A

    公开(公告)日:2022-04-29

    申请号:CN202210335647.4

    申请日:2022-04-01

    Abstract: 本发明公开了一种基于信息增强调用序列的API推荐方法及装置,方法包括解析源代码提取得到原始API调用序列,根据原始API调用序列获取用户自定义API和非自定义API的对应关系,得到增强API调用序列;将原始API调用序列和增强API调用序列分别放入神经网络嵌入层,得到原始序列表示向量和第一增强序列表示向量,将第一增强序列表示向量输入神经网络第一编码器,得到第二增强序列表示向量,并和原始序列表示向量进行信息融合得到API新向量表示;将API新向量表示输入神经网络第二编码器中,得到API序列向量并输入相似度计算模块,得到每一个候选API的概率。本发明可解决原始API调用序列信息不足和用户自定义API携带信息过少影响推荐准确率的问题。

Patent Agency Ranking