-
公开(公告)号:CN114844621B
公开(公告)日:2023-04-07
申请号:CN202210365746.7
申请日:2022-04-08
Applicant: 哈尔滨工业大学(深圳) , 暨南大学
Abstract: 本发明公开了一种基于多密钥全同态加密的多用户隐私保护机器学习方法及装置,方法包括:由公共字符串CRS进行多密钥全同态加密算法的初始化、生成安全参数λ及生成公共参数集mkparams;服务器S整合各个数据提供方上传的单密钥密文数据Encski(di)得到多密钥密文数据集Encsk(D);服务器S在多密钥密文数据集Encsk(D)的基础上将普通机器学习算法中的线性运算替换为全同态加法和全同态乘法,对多密钥密文数据集Encsk(D)进行机器学习建模训练;服务器S将多密钥加密的模型密文Encsk(model)下发给各个数据提供方DPi和解密方DE;解密多密钥模型密文Encsk(model),从而得到由各个数据提供方DPi的数据D训练得到的模型model=Decsk(Encsk(model))。本发明在保证较高安全性的同时,以较低通信代价和较少交互次数完成隐私计算任务。
-
公开(公告)号:CN117592527B
公开(公告)日:2024-11-26
申请号:CN202410074807.3
申请日:2024-01-18
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06N3/0499 , G06N3/084 , G06F18/214 , G06F21/60
Abstract: 本发明公开了一种基于函数秘密共享的隐私保护神经网络训练方法及装置,来支持实用的安全神经网络训练,该框架具有较小的常数轮在线通信复杂度,在不降低模型精度的情况下降低离线通信成本,同时离线阶段通过使用安全两方计算友好的伪随机生成器,采用分布式比较函数密钥生成方案来取代可信第三方。本发明通过提出了具有最小密钥大小的通信优化的分布式比较函数,无需较大函数秘密共享密钥量;通过设计离线阶段,在离线阶段生成相关随机性用于在线阶段函数计算,使得在线阶段只需1轮通信即可,从而大大减少通信量。
-
公开(公告)号:CN117592527A
公开(公告)日:2024-02-23
申请号:CN202410074807.3
申请日:2024-01-18
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06N3/0499 , G06N3/084 , G06F18/214 , G06F21/60
Abstract: 本发明公开了一种基于函数秘密共享的隐私保护神经网络训练方法及装置,来支持实用的安全神经网络训练,该框架具有较小的常数轮在线通信复杂度,在不降低模型精度的情况下降低离线通信成本,同时离线阶段通过使用安全两方计算友好的伪随机生成器,采用分布式比较函数密钥生成方案来取代可信第三方。本发明通过提出了具有最小密钥大小的通信优化的分布式比较函数,无需较大函数秘密共享密钥量;通过设计离线阶段,在离线阶段生成相关随机性用于在线阶段函数计算,使得在线阶段只需1轮通信即可,从而大大减少通信量。
-
公开(公告)号:CN106657059B
公开(公告)日:2020-04-21
申请号:CN201611189991.8
申请日:2016-12-21
Applicant: 哈尔滨工业大学深圳研究生院
Abstract: 本发明提供一种具有访问控制功能的数据库查询方法和系统,属于数据库查询领域。本发明系统包括密钥产生中心:用于生成主密钥、查询密钥和密钥;数据上传者:对每一条记录建立属性索引,并对记录及属性索引加密,得到记录密文和索引密文,然后将查询密钥进行加密,并把加密后的查询密钥发送给数据查询用户;数据查询用户:采用密钥和加密后的查询密钥解密得到查询密钥,然后通过查询密钥和查询条件生成谓词陷门,发送给服务器,并采用密钥解密记录密文,得到查询结果;服务器:用于对数据库的数据进行查询,将符合条件的记录密文数据返回给数据查询用户。本发明既能够对数据查询用户访问数据库的权限进行控制,又能够保证数据和查询条件的机密性。
-
公开(公告)号:CN106657059A
公开(公告)日:2017-05-10
申请号:CN201611189991.8
申请日:2016-12-21
Applicant: 哈尔滨工业大学深圳研究生院
Abstract: 本发明提供一种具有访问控制功能的数据库查询方法和系统,属于数据库查询领域。本发明系统包括密钥产生中心:用于生成主密钥、查询密钥和密钥;数据上传者:对每一条记录建立属性索引,并对记录及属性索引加密,得到记录密文和索引密文,然后将查询密钥进行加密,并把加密后的查询密钥发送给数据查询用户;数据查询用户:采用密钥和加密后的查询密钥解密得到查询密钥,然后通过查询密钥和查询条件生成谓词陷门,发送给服务器,并采用密钥解密记录密文,得到查询结果;服务器:用于对数据库的数据进行查询,将符合条件的记录密文数据返回给数据查询用户。本发明既能够对数据查询用户访问数据库的权限进行控制,又能够保证数据和查询条件的机密性。
-
公开(公告)号:CN109921904A
公开(公告)日:2019-06-21
申请号:CN201910348801.X
申请日:2019-04-28
Applicant: 哈尔滨工业大学(深圳)
IPC: H04L9/08
Abstract: 本发明提供了一种基于经典-量子极化信道的高效量子密钥分发系统,包括发送方和接收方,所述发送方包括量子信道参数估计模块、极化码构造模块、极化码编码模块、量子比特制备模块、量子比特传输模块、量子比特筛选模块、安全性检测模块以及最终密钥生成模块,所述接收方包括量子信道参数估计模块、极化码构造模块、量子比特传输模块、量子比特筛选模块、安全性检测模块、极化码译码模块以及最终密钥生成模块。本发明还提供了一种基于经典-量子极化信道的高效量子密钥分发方法。本发明的有益效果是:通过在传输前对所传密钥进行极化码预编码,充分利用了极化码的信道容量可达特性和纠错能力,提高了通信过程中最终安全密钥的生成速率。
-
公开(公告)号:CN108694414A
公开(公告)日:2018-10-23
申请号:CN201810455121.3
申请日:2018-05-11
Applicant: 哈尔滨工业大学深圳研究生院
CPC classification number: G06K9/6268 , G06N3/0454
Abstract: 本发明提供了一种基于数字图像转化和深度学习的数字取证文件碎片分类方法,先将文件碎片转换为灰度图像,然后利用深度学习提取图像的更多隐藏特征,以提高文件碎片分类的性能;其中,所述更多隐藏特征包括:不同的纹理特征,随机特征和用于分类的可压缩性;所述深度学习采用修改和优化的CNN模型,所述模型的第一层卷积层使用1x1比例的卷积核,它使用许多管道使网络结构复杂化;由于每个层中都有不同数量和尺度的滤波核,通过梯度下降和逆向训练来训练最佳匹配本分类模型特征图。本发明通过利用CNN的局部连接和权重共享的优点,提取文件碎片的高维特征,该方案对于以前方案中不易分类的文件,如复合文件和压缩文件,也能实现高精度的碎片分类。
-
公开(公告)号:CN109921904B
公开(公告)日:2021-03-16
申请号:CN201910348801.X
申请日:2019-04-28
Applicant: 哈尔滨工业大学(深圳)
IPC: H04L9/08
Abstract: 本发明提供了一种基于经典‑量子极化信道的高效量子密钥分发系统,包括发送方和接收方,所述发送方包括量子信道参数估计模块、极化码构造模块、极化码编码模块、量子比特制备模块、量子比特传输模块、量子比特筛选模块、安全性检测模块以及最终密钥生成模块,所述接收方包括量子信道参数估计模块、极化码构造模块、量子比特传输模块、量子比特筛选模块、安全性检测模块、极化码译码模块以及最终密钥生成模块。本发明还提供了一种基于经典‑量子极化信道的高效量子密钥分发方法。本发明的有益效果是:通过在传输前对所传密钥进行极化码预编码,充分利用了极化码的信道容量可达特性和纠错能力,提高了通信过程中最终安全密钥的生成速率。
-
公开(公告)号:CN118366089B
公开(公告)日:2024-09-27
申请号:CN202410797280.7
申请日:2024-06-20
Applicant: 暨南大学
IPC: G06V20/40 , G06V10/141 , G06V10/145 , G06V10/147 , G06V10/762 , G06V10/774
Abstract: 本发明公开了一种基于LED照明调制与稀疏扰动传播的视频识别物理对抗攻击系统及方法,系统包括对抗攻击扰动信号生成模块、LED照明调制与驱动模块、LED照明光源、CMOS图像传感器和视频识别模型;本发明对视频进行关键帧选择,并利用这些关键帧生成可传播的对抗攻击扰动信号,用于LED照明调制对不同视频拍摄场景进行物理对抗攻击;其中,设计了一种关键帧选择算法,通过聚类及熵值度量选出视频中的重要帧和脆弱帧;通过对关键帧执行稀疏对抗攻击破坏视频特征;在训练阶段引入基于关键帧分类线索、扰动传播路径和信号调制因子的融合对抗损失,增强对抗扰动的传播能力以及隐蔽性;LED照明调制的对抗攻击扰动形式可泛化和迁移至不同视频样本和视频识别模型。
-
公开(公告)号:CN115100279B
公开(公告)日:2024-09-13
申请号:CN202210654874.3
申请日:2022-06-10
Applicant: 暨南大学
IPC: G06T7/73 , G06V10/764 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/082 , G06N3/084
Abstract: 本发明公开了一种基于BN‑CNN的高速可见光定位图像处理方法、系统及介质,方法为:获取信号发射端LED灯的唯一标识符并编码为交叉二五码,通过调制器使用开关键控对LED灯进行调制,驱动LED灯发出不同频率的光信号;使用CMOS图像传感器在信号接收端捕获光信号图像,并划分为训练集和测试集;将条纹图像训练集导入设计好的批规范化卷积神经网络进行训练,使用连续梯度下降法优化损失,获得条纹图像分类模型;将条纹图像测试集导入条纹图像分类模型进行识别,判断条纹图像所属类别及类别对应LED灯的唯一标识符,确定信号接收端的位置。本发明通过批规范化卷积神经网络来进行深度学习,提高了高速运动下捕捉到的模糊图像的识别速度和准确率,具有良好的鲁棒性。
-
-
-
-
-
-
-
-
-