-
公开(公告)号:CN108694414A
公开(公告)日:2018-10-23
申请号:CN201810455121.3
申请日:2018-05-11
Applicant: 哈尔滨工业大学深圳研究生院
CPC classification number: G06K9/6268 , G06N3/0454
Abstract: 本发明提供了一种基于数字图像转化和深度学习的数字取证文件碎片分类方法,先将文件碎片转换为灰度图像,然后利用深度学习提取图像的更多隐藏特征,以提高文件碎片分类的性能;其中,所述更多隐藏特征包括:不同的纹理特征,随机特征和用于分类的可压缩性;所述深度学习采用修改和优化的CNN模型,所述模型的第一层卷积层使用1x1比例的卷积核,它使用许多管道使网络结构复杂化;由于每个层中都有不同数量和尺度的滤波核,通过梯度下降和逆向训练来训练最佳匹配本分类模型特征图。本发明通过利用CNN的局部连接和权重共享的优点,提取文件碎片的高维特征,该方案对于以前方案中不易分类的文件,如复合文件和压缩文件,也能实现高精度的碎片分类。