-
公开(公告)号:CN102502973B
公开(公告)日:2013-10-30
申请号:CN201110343670.X
申请日:2011-11-03
Applicant: 哈尔滨工业大学
IPC: C02F3/34
Abstract: 处理难降解废水的无隔膜升流式连续流生物电化学装置,它涉及一种废水处理装置。本发明要解决BESs成本高、效率低的技术问题。壳体内从下至上固定连接有底板、下隔板、阴极、上隔板、阳极和顶板。本发明对现有的生物电化学反应器进行了较大的改进,根据废水的特点将电极位置合理排布,使水中难降解污染物先在阴极高效脱毒,然后再利用阳极氧化作用对水中污染物进一步降解,较大的提高了难降解废水的处理效率。此外,该发明采用无隔膜设计,不仅减小了反应器内阻,而且降低了成本,有利于反应器扩大化和工程化。
-
公开(公告)号:CN102502973A
公开(公告)日:2012-06-20
申请号:CN201110343670.X
申请日:2011-11-03
Applicant: 哈尔滨工业大学
IPC: C02F3/34
Abstract: 处理难降解废水的无隔膜升流式连续流生物电化学装置,它涉及一种废水处理装置。本发明要解决BESs成本高、效率低的技术问题。壳体内从下至上固定连接有底板、下隔板、阴极、上隔板、阳极和顶板。本发明对现有的生物电化学反应器进行了较大的改进,根据废水的特点将电极位置合理排布,使水中难降解污染物先在阴极高效脱毒,然后再利用阳极氧化作用对水中污染物进一步降解,较大的提高了难降解废水的处理效率。此外,该发明采用无隔膜设计,不仅减小了反应器内阻,而且降低了成本,有利于反应器扩大化和工程化。
-
公开(公告)号:CN101270368A
公开(公告)日:2008-09-24
申请号:CN200810064536.4
申请日:2008-05-19
Applicant: 哈尔滨工业大学
IPC: C12P3/00 , C02F3/34 , C02F101/30
Abstract: 有机废水梯级利用生物产氢的方法,它涉及一种产氢的方法。本发明解决了现有厌氧活性污泥进行有机废水发酵法生物制氢的转化率低的问题。本发明产氢方法如下:一、在启动过程中阳极室处于厌氧状态,将厌氧活性污泥放入阳极室,pH值为6.8~7.0的营养液通入阳极室,阴极室内加入磷酸盐缓冲液,启动的前28~35天阴极室内空气曝气,待输出电压持续稳定在400mV以上,启动成功;二、将有机废水由阳极室的进水口注入阳极室内,阳极室内处理有机废水,阴极室得到氢气。本发明的方法转化有机底物的库仑效率高达80%以上,阴极电子转化为氢气的电子转化效率接近100%,整个工艺阴极室获得纯度为99.5%的氢气,整体工艺能量转化率高达80%以上,基于输入电压的氢气收益率为288%。
-
公开(公告)号:CN115367871B
公开(公告)日:2024-05-14
申请号:CN202211065709.0
申请日:2022-09-01
Applicant: 哈尔滨工业大学(深圳)
IPC: C02F3/28 , C02F3/34 , C02F101/16
Abstract: 本发明提供了一种硫自养反硝化移动床,该硫自养反硝化移动床包括反应器进水端(2)、进水筛板(4)、填料层区域(5)、螺旋输送杆件(6)和反应器出水端(7),该反应器移动床的底部呈漏斗状;螺旋输送杆件(6)位于填料层区域,本发明通过设置螺旋输送杆件,在螺旋输送杆件的转动过程中,填料自下而上缓慢移动,当填料移动至螺纹最上方时,填料又从螺杆与反应器内壁的空隙中回落。在此期间,填料颗粒间相互摩擦,氮气在填料摩擦过程中被不断排出,填料之间也不会粘黏板结,还可以有效控制生物膜的厚度,使得主要功能菌群定向富集,有效提高基质传质效率及污水实际接触停留时间,提升污水处理效果,降低了亚硝酸盐的积累和温室气体N2O的排放。此外,随着脱氮效能的提升,反应池体的填料使用量、占地面积、吨水投资成本也相应降低。
-
公开(公告)号:CN117303571A
公开(公告)日:2023-12-29
申请号:CN202210880703.2
申请日:2022-07-25
Applicant: 哈尔滨工业大学(深圳)
IPC: C02F3/28
Abstract: 本发明提供了一种反冲洗调控硫基填料自养反硝化滤池的方法,该方法通过控制反冲洗频率和强度即可对废水进行有效处理,此外,通过反冲洗频率和强度的控制,可控制床层中积累的氮气,除此之外,还能控制生物膜的厚度,同时通过在线监测设备可实时对出水硝氮浓度进行监测,并设置反馈系统,根据反馈的出水硝氮浓度与设定值进行比较,进而调节反冲洗频率和反冲洗强度,不仅有效降低污水处理工序,还可有效降低污水处理成本,提高对污水的处理效果。
-
公开(公告)号:CN114524505B
公开(公告)日:2023-05-09
申请号:CN202210106240.4
申请日:2022-01-28
Applicant: 哈尔滨工业大学
IPC: C02F3/00 , C02F3/34 , C02F101/36
Abstract: 本发明公开了一种基于缓释碳源耦合生物电化学系统精准完全脱氯氯代烃的方法,属于土壤地下水原位生物修复技术领域。本发明解决了场地氯代烃污染原位生物修复过程中,厌氧微生物还原脱氯过程由于外源有机碳和电子供体缺乏导致的氯代烃降解不彻底导致的有毒有害中间产物积累问题,以及常规水溶性有机碳源投加导致的场地COD升高和二次污染问题。本发明采用具有高效选择性的PHB作为缓释碳源,通过构建PHB耦合生物电化学系统,在生物阴极释电子和PHB释氢气的双重电子供给作用下,选择性激活挥发性氯代烃(三氯乙烯TCE/四氯乙烯PCE等)脱氯功能菌群,精准促进PCE和TCE的次序脱氯到乙烯,实现氯代烃的高效完全脱氯和脱毒。
-
公开(公告)号:CN115367871A
公开(公告)日:2022-11-22
申请号:CN202211065709.0
申请日:2022-09-01
Applicant: 哈尔滨工业大学(深圳)
IPC: C02F3/28 , C02F3/34 , C02F101/16
Abstract: 本发明提供了一种硫自养反硝化移动床,该硫自养反硝化移动床包括反应器进水端(2)、进水筛板(4)、填料层区域(5)、螺旋输送杆件(6)和反应器出水端(7),该反应器移动床的底部呈漏斗状;螺旋输送杆件(6)位于填料层区域,本发明通过设置螺旋输送杆件,在螺旋输送杆件的转动过程中,填料自下而上缓慢移动,当填料移动至螺纹最上方时,填料又从螺杆与反应器内壁的空隙中回落。在此期间,填料颗粒间相互摩擦,氮气在填料摩擦过程中被不断排出,填料之间也不会粘黏板结,还可以有效控制生物膜的厚度,使得主要功能菌群定向富集,有效提高基质传质效率及污水实际接触停留时间,提升污水处理效果,降低了亚硝酸盐的积累和温室气体N2O的排放。此外,随着脱氮效能的提升,反应池体的填料使用量、占地面积、吨水投资成本也相应降低。
-
公开(公告)号:CN104310713A
公开(公告)日:2015-01-28
申请号:CN201410610189.6
申请日:2014-11-03
Applicant: 哈尔滨工业大学
IPC: C02F9/14
Abstract: 一种升流式厌氧-生物催化电解耦合强化难降解废水处理装置,本发明涉及处理难降解废水的装置。本发明要解决现有技术处理有毒废水效率低、毒性耐受能力弱,并且缺乏稳定性的问题。本装置由反应器主体、盖板、布水板、钛丝、阴极、阳极、参比电极、电阻和电源组成;其中,反应器主体下部的左右两侧各设一个进水口,反应器主体上部的左右两侧各设一个出水口,集气孔设置在反应器主体的顶端,采样口设置在反应器主体的正面;布水板、阴极和阳极设置在反应器主体的内部,阳极高于阴极。本发明采用一体式无隔膜厌氧-生物催化电解系统,具有厌氧生物法和生物电化学法的特点,成本低,容积负荷高。本发明装置用于处理难降解有毒废水。
-
公开(公告)号:CN103043776B
公开(公告)日:2014-10-08
申请号:CN201210512259.5
申请日:2012-12-04
Applicant: 哈尔滨工业大学
Abstract: 套筒型微生物催化电解装置及用套筒型微生物催化电解装置降解废水的方法,它涉及一种微生物电解装置及水处理方法。本发明解决了现有的双室生物电化学系统阳两极距离较大,导致反应器内阻增加污染物的去除率低的技术问题。套筒型微生物催化电解装置由内筒1、外筒2和布水器3三部分组成,降解废水的方法如下:在外加电压的条件下,将氧化废水通过阳极进水口17进入阳极室4,同时还原废水通过阴极进水口16经布水器3布水进入阴极室5,水利停留时间为6h~48h,出水。本发明采用套筒型装置,可以有效的缩短阴阳两极距离,减少过电势,减小反应器内阻,有利于提高反应器的运行效能。
-
公开(公告)号:CN104059960A
公开(公告)日:2014-09-24
申请号:CN201410317146.9
申请日:2014-07-04
Applicant: 哈尔滨工业大学
Abstract: 一种细菌复合厌氧矿化2,4,6-三溴苯酚的方法,本发明涉及厌氧矿化2,4,6-三溴苯酚的方法。本发明是要解决现有的生物降解2,4,6-三溴苯酚的方法矿化率低的技术问题。本发明的方法:一、制造厌氧条件;二、由厌氧发酵Ma13菌株和还原脱卤Dehaloabacter菌种在厌氧条件下对2,4,6-三溴苯酚进行还原脱溴;三、由硫酸还原DS菌株进行氧化分解,完成细菌复合厌氧矿化2,4,6-三溴苯酚。根据14C-苯酚示踪试验计算,2,4,6-三溴苯酚矿化到CO2的百分比为100%所需要的时间约28~35天。本方法适于处理深层地下水、厌氧反应器中的2,4,6-三溴苯污染物。
-
-
-
-
-
-
-
-
-