-
公开(公告)号:CN102880865B
公开(公告)日:2015-06-17
申请号:CN201210372408.2
申请日:2012-09-28
Applicant: 东南大学
Abstract: 本发明公开了一种基于肤色与形态特征的动态手势识别方法,该方法为:采集视频图像,得到当前的视频帧;对采集到的视频帧作肤色阈值处理,得到肤色二值图像;将二值图像进行滤波降噪处理,提高图像质量;检测识别肤色二值图像中的人手部分;根据人手部分的重心位置信息识别手势的动作。本发明具有一下优点:(1)实时性好,响应时间短,可以应用到人机交互领域;(2)成本低廉,通过摄像头和计算机或DSP之类的处理设备即可组成;(3)稳定性好,对于手势的旋转、平移、变形,本算法都有较好的处理效果。本发明可应用于人机交互领域。
-
公开(公告)号:CN102779349B
公开(公告)日:2015-02-18
申请号:CN201210226642.4
申请日:2012-06-30
Applicant: 东南大学
IPC: G06T7/40
Abstract: 本发明是一种基于图像颜色空间特征的雾天检测方法,它包括如下步骤:第一步,通过视频图像或者单幅图像获取背景图片;第二步,对背景图片进行颜色空间转换,提取颜色空间特征:首先对背景图片进行颜色空间转换,从RGB颜色空间转换到HSV颜色空间,然后根据图像包含信息提取出HSV各个分量的特征;第三步,根据判定条件将图像包含天气信息划分为非雾天、小雾天气和大雾天气:首先若满足判定条件1,则为大雾天气,否则继续判定,其次若满足判定条件2,则为非雾天气,否则继续判定,最后若满足判定条件3,则为小雾天气,否则为大雾天气。本发明适用于对高速公路雾天监测,特别是对部分路段团雾突发情况进行预警,保障道路行驶安全。
-
公开(公告)号:CN103927748A
公开(公告)日:2014-07-16
申请号:CN201410141750.0
申请日:2014-04-09
Applicant: 东南大学
IPC: G06T7/00
Abstract: 本发明公开了一种基于多矩形图像距离转换模型的坐标标定方法,按照以下步骤进行:步骤1:固定摄像机,建立坐标系;步骤2:连续构造多个矩形块;步骤3:求世界坐标系O-XYZ的X方向在图像坐标系O'UV中的消失点Q′1;步骤4:求世界坐标系O-XYZ的Y方向在图像坐标系O'UV中的消失点Q′2;步骤5:修正矩形顶点Ai′,Bi′(1≤i≤n)的坐标;步骤6:求距离转换模型系数K12;步骤7:求距离转换模型系数K11;步骤8:求距离转换模型系数K22;步骤9:求距离转换模型系数K21;步骤10:求取世界坐标系中的一点P的坐标。本发明采用多个矩形,有利于减小求解消失点的误差;修正矩形的顶点坐标,有利于弥补由于车道线磨损带来的误差;采用直线拟合的方法求取距离转换模型系数K22,提高了K22的准确度。
-
公开(公告)号:CN102831428A
公开(公告)日:2012-12-19
申请号:CN201210227572.4
申请日:2012-06-30
Applicant: 东南大学
Abstract: 一种图像内快速响应矩阵码区域的提取方法,第一步,初始化读入图像,将输入的RGB图像转换到灰度空间;第二步,利用大津法对其进行二值化处理;第三步,利用快速响应矩阵码寻像图形的形态特征:一个矩形中包含两个小矩形,利用这个特征和图像轮廓得到快速响应矩阵码的三个寻像图形的中心点,并且在寻轮廓时,对于每次寻到的一个轮廓,就对其进行判断是否符合规格,并进一步得到快速响应矩阵码的四个顶点实现精确定位。这种方法使得找寻像图形更准确,并且使得需要的存储空间大大减小,实验表明这种方法对普通摄像头采集的图像就能取得很好的效果,实时性高。
-
公开(公告)号:CN102779349A
公开(公告)日:2012-11-14
申请号:CN201210226642.4
申请日:2012-06-30
Applicant: 东南大学
IPC: G06T7/40
Abstract: 本发明是一种基于图像颜色空间特征的雾天检测方法,它包括如下步骤:第一步,通过视频图像或者单幅图像获取背景图片;第二步,对背景图片进行颜色空间转换,提取颜色空间特征:首先对背景图片进行颜色空间转换,从RGB颜色空间转换到HSV颜色空间,然后根据图像包含信息提取出HSV各个分量的特征;第三步,根据判定条件将图像包含天气信息划分为非雾天、小雾天气和大雾天气:首先若满足判定条件1,则为大雾天气,否则继续判定,其次若满足判定条件2,则为非雾天气,否则继续判定,最后若满足判定条件3,则为小雾天气,否则为大雾天气。本发明适用于对高速公路雾天监测,特别是对部分路段团雾突发情况进行预警,保障道路行驶安全。
-
公开(公告)号:CN105740809B
公开(公告)日:2019-03-12
申请号:CN201610060174.6
申请日:2016-01-28
Applicant: 东南大学
IPC: G06K9/00
Abstract: 本发明是一种基于机载摄像机的高速公路车道线检测方法。第一步逐帧读入图像,第二步截取感兴趣区域图像,第三步对感兴趣区域图像进行降采样,第四步基于彩色图像进行二值化,获取含有车道线的二值图像,第五步利用车道线宽度信息去除车辆和路边建筑物等干扰物,然后根据图像中每个连通域的面积进行滤波,去除面积较小的杂散点,得到车道线图像,第六步获取直线段参数,第七步根据车道线分布特点剔除非车道线直线,第八步更新感兴趣区域ROI宽度和左上角点坐标。本发明是一种基于机载摄像机的高速公路车道线检测方法,可以检测视频图像中的所有车道线,为进行高速公路上各车辆的违法行为分析提供了重要保障,而且该方法准确性高,鲁棒性好。
-
公开(公告)号:CN105654445B
公开(公告)日:2018-08-21
申请号:CN201610060892.3
申请日:2016-01-28
Applicant: 东南大学
Abstract: 本发明公开了一种基于小波变换边缘检测的手机图像去噪方法,能够在有效平滑噪声的同时保留图像边缘细节,去除彩色噪声,从而得到理想的去噪效果,包括如下步骤:第一步,读入彩色噪声图像,将输入的图像从RGB彩色空间转换到YUV彩色空间;第二步,用高斯滤波器平滑图像,对Y通道图像进行三次低通滤波;第三步,利用小波变换算法检测图像边缘;第四步,采用阈值分割得到边缘的二值化图像;第五步,在图像边缘区域采用各向异性扩散平滑噪声;第六步,在图像平滑区域采用均值滤波去噪;第七步,对平滑区域图像进一步去除彩色噪声;第八步,将图像从YUV彩色空间转换到RGB彩色空间,得到最终的去噪图像。
-
公开(公告)号:CN103778430B
公开(公告)日:2017-03-22
申请号:CN201410060480.0
申请日:2014-02-24
Applicant: 东南大学
Abstract: 本发明公开了一种基于肤色分割和AdaBoost相结合的快速人脸检测方法,包括以下步骤:第一步,构建N层高斯金字塔;第二步,确定在高斯金字塔中进行肤色分割人脸检测的层数Ev;第三步,对高斯金字塔的第Ev层图像进行肤色分割人脸检测,标定出矩形人脸候选区域;第四步,确定在高斯金字塔中进行AdaBoost人脸检测的层数Ev';第五步,对高斯金字塔的第Ev'层图像进行AdaBoost人脸检测;第六步,获取人脸区域。本发明结合了肤色分割和AdaBoost算法,并引入高斯金字塔,通过先为待检图像创建高斯金字塔,然后选择在高斯金字塔的适当层分别进行肤色分割和AdaBoost人脸检测,从而大幅提高了人脸检测效率。
-
公开(公告)号:CN103927748B
公开(公告)日:2016-08-17
申请号:CN201410141750.0
申请日:2014-04-09
Applicant: 东南大学
IPC: G06T7/00
Abstract: 本发明公开了一种基于多矩形图像距离转换模型的坐标标定方法,按照以下步骤进行:步骤1:固定摄像机,建立坐标系;步骤2:连续构造多个矩形块;步骤3:求世界坐标系O?XYZ的X方向在图像坐标系O'UV中的消失点Q′1;步骤4:求世界坐标系O?XYZ的Y方向在图像坐标系O'UV中的消失点Q′2;步骤5:修正矩形顶点Ai′,Bi′(1≤i≤n)的坐标;步骤6:求距离转换模型系数K12;步骤7:求距离转换模型系数K11;步骤8:求距离转换模型系数K22;步骤9:求距离转换模型系数K21;步骤10:求取世界坐标系中的一点P的坐标。本发明采用多个矩形,有利于减小求解消失点的误差;修正矩形的顶点坐标,有利于弥补由于车道线磨损带来的误差;采用直线拟合的方法求取距离转换模型系数K22,提高了K22的准确度。
-
公开(公告)号:CN105005778A
公开(公告)日:2015-10-28
申请号:CN201510502841.7
申请日:2015-08-14
Applicant: 东南大学
IPC: G06K9/00
CPC classification number: G06K9/00825
Abstract: 一种基于改进的视觉背景提取的高速公路车辆检测方法,第一步,初始化读入图像,将输入的彩色图像转换为灰度图像;第二步,对图像进行背景建模,如果是第一帧图像,则进行背景初始化,否则进行背景更新,从而分割出背景;第三步,从前景中分割出路面;第四步,对图像进行八邻域填充;第五步,利用车道线较窄的特点来去除车道线;第六步,采用纵向填充的方法来填充车辆内部;第七步,提取车辆区域并绘制车辆区域的外接矩形框;本发明采用图像处理的方式检测无人机航拍视频中的高速公路上的车辆,成本低廉,检测精度高,实时性好,适用面广。
-
-
-
-
-
-
-
-
-