-
公开(公告)号:CN106891004A
公开(公告)日:2017-06-27
申请号:CN201710160020.9
申请日:2017-03-17
Applicant: 北京科技大学
IPC: B22F3/105
CPC classification number: Y02P10/295 , B22F3/1055 , B22F2003/1056 , B22F2003/1057
Abstract: 一种3D打印头用固体粉末连续输送装置,属于3D打印技术领域和粉末送料领域。装置由调速电机、粉料拨叉、粉末储料室、空心螺旋弹簧、软管、辅助气进口和粉末进口构成。粉末储料室采用下方为漏斗型的结构,储料室中安装有粉料拨叉,侧壁上部设有辅助气进口和粉末进口。空心螺旋弹簧上部设计为有足够长度的长轴,使其与粉料拨叉相接并穿过粉末储料室上盖与外部调速电机联接。本装置可持续稳定输送流动性极差的不规则微细粉末;并可实现任何弯曲管道内的送料且不受输送距离限制,能够随着3D打印头的移动变换任意形状;可控制粉末的输送与停止,精密匹配3D打印过程。
-
公开(公告)号:CN106825577A
公开(公告)日:2017-06-13
申请号:CN201611183316.4
申请日:2016-12-20
Applicant: 北京科技大学
CPC classification number: B22F3/1225 , B22F3/1266 , B22F3/15 , B28B3/003 , C03B19/00 , C03B19/01
Abstract: 本发明涉及一种热等静压玻璃包套的制备方法。利用3D打印技术,选用玻璃丝材或者玻璃粉末作为3D成型原料,按照制品三维模型程序,将玻璃丝材逐层熔融打印制备热等静压玻璃包套,将热等静压制品粉末或预制坯装入玻璃包套中,抽真空密封后,即可进行热等静压致密化处理;或将玻璃粉末与粘结剂混合均匀,调配成适当浓度的料浆,通过3D打印将上述料浆在热等静压制品预制坯表面逐层粘结固化后,在马弗炉中加热脱除粘结剂并使玻璃粉熔融均匀包覆预制坯表面,冷却后获得带玻璃包套的预制坯,即可直接进行热等静压致密化处理。本发明技术可以根据热等静压制品材质的熔点选用不同软化温度的玻璃丝材或玻璃粉末,工艺简单,操作方便,适用范围广。
-
公开(公告)号:CN111101019B
公开(公告)日:2021-04-16
申请号:CN202010006974.6
申请日:2020-01-03
Applicant: 北京科技大学
Abstract: 一种金属卤化物净化颗粒表面制备高性能钛及钛合金的方法,属于粉末冶金钛领域。本发明将提出了采用金属卤化物作为表面净化剂,将金属卤化物包覆在钛粉末表面,经成形烧结,最后制得高性能钛制品部件。本发明中金属卤化物与Ti及钛氧化膜发生氧化还原反应,在氧化膜扩散之前,有效去除钛粉末表面氧化膜,起到控制钛金属基体中的氧含量增加的效果;同时,活化钛粉末表面,有利于提高烧结动力促进密度提高,从而获得高性能钛及钛合金。净化产物的金属元素可进一步与钛固溶,进一步提高钛及钛合金的综合性能。本发明具有生产成本低、制备工艺简单、工艺适用性大、可大规模工业化生产等特点。
-
公开(公告)号:CN110842194B
公开(公告)日:2020-10-13
申请号:CN201911120545.5
申请日:2019-11-15
Applicant: 北京科技大学
Abstract: 一种通过粉末压烧制备高硅钢薄片的方法,属于粉末冶金技术领域。本发明以气雾化的Fe‑6.5wt.%Si粉为原料,通过粉末预置使粉末处于压实状态,并放于真空烧结炉中经高温烧结使其冶金结合,经多道次热轧至一定厚度后再经1‑4次冷轧,最后在高温下进行退火得到具有优良性能的高硅钢薄片。相较于采用水雾化粉末,本发明采用气雾化的高硅钢粉末极大地减少了合金体系的氧化物夹杂。同时,采用直接压烧的方法越过了球形的气雾化粉末难以成形的问题,从而避免了因添加成形剂导致的工艺复杂性及后续的脱胶、残碳问题,具有操作简单、生产效率高、产品精度高、工艺流程短、无污染与夹杂、性能优异等优点。
-
公开(公告)号:CN109590473B
公开(公告)日:2020-07-17
申请号:CN201811554956.0
申请日:2018-12-18
Applicant: 北京科技大学
Abstract: 一种多孔钛基给药雾化芯以及雾化用发热组件的制备方法,属于多孔复合金属材料的领域。本发明采用多孔钛及钛合金作为给药雾化芯基体材料,镍铬等合金材料作为发热电阻层,通过多种成型技术制备出这一新型多孔钛基给药雾化芯以及雾化用发热组件。该方法采用生物友好性材料钛作为基体原材料,镍铬等合金材料作为发热电阻层,具有安全无毒,孔隙可控,抗氧化、耐腐蚀,化学稳定性好,易于烧结等诸多优点,并且发热电阻层与基体结合紧密,避免了陶瓷多孔基体与发热电阻层的结合易脱落问题。用该方法制备的给药雾化芯以及雾化用发热组件装配的雾化器表现出良好雾化性能,雾化气流均匀稳定,不仅改善和简化了雾化芯的制备工艺,而且降低了加工成本。
-
公开(公告)号:CN110105015B
公开(公告)日:2020-05-08
申请号:CN201910402072.1
申请日:2019-05-14
Applicant: 北京科技大学
Abstract: 一种硅酸盐基微孔给药雾化芯及其发热组件的制备方法,属于微孔无机复合材料的领域。本发明采用硅酸盐基熟料、造孔剂与水的混合物作为制备给药雾化芯基体材料,并使用镍铬铁锰等合金材料作为电阻发热组件,可通过多种成形技术实现硅酸盐基微孔给药雾化芯及其发热组件的制备。以微孔硅酸盐基材料作为雾化芯基体,可以省去坯体成形后材料的高温烧结过程,避免发热组件在高温烧结过程中出现氧化、变脆等问题,并极大地节约了生产成本、简化了雾化芯的制备工艺。同时生产的雾化芯具有产品尺寸精确、成型快等优点。
-
公开(公告)号:CN109676125B
公开(公告)日:2020-03-31
申请号:CN201910016362.2
申请日:2019-01-08
Applicant: 北京科技大学
Abstract: 本发明提供了一种3D打印制备烧结钕铁硼磁体的方法,属于粉末冶金的领域。通过在钕铁硼磁粉的表面包覆一层无氧的有机物薄膜,防止磁粉在3D打印过程中氧化,同时采用液态光敏树脂制备钕铁硼的打印浆料,通过超声振动控制系统实现高固含量浆料的打印,从而确保打印坯体的精度,并采用取向充磁系统实现磁体的打印取向成型,最终得到复杂形状的高性能烧结钕铁硼零件。采用无氧的有机物包覆在易氧化的钕铁硼磁粉表面,控制磁粉在成形过程中的氧化问题,并采用液态光敏树脂制备3D打印的钕铁硼料浆,实现光固化快速成型。本发明制得的烧结钕铁硼磁体具有良好的磁性能,且可实现各种复杂形状的近净成型,省去了磁体复杂零件的切削加工,大大降低了生产成本且节约了资源。
-
公开(公告)号:CN110842194A
公开(公告)日:2020-02-28
申请号:CN201911120545.5
申请日:2019-11-15
Applicant: 北京科技大学
Abstract: 一种通过粉末压烧制备高硅钢薄片的方法,属于粉末冶金技术领域。本发明以气雾化的Fe-6.5wt.%Si粉为原料,通过粉末预置使粉末处于压实状态,并放于真空烧结炉中经高温烧结使其冶金结合,经多道次热轧至一定厚度后再经1-4次冷轧,最后在高温下进行退火得到具有优良性能的高硅钢薄片。相较于采用水雾化粉末,本发明采用气雾化的高硅钢粉末极大地减少了合金体系的氧化物夹杂。同时,采用直接压烧的方法越过了球形的气雾化粉末难以成形的问题,从而避免了因添加成形剂导致的工艺复杂性及后续的脱胶、残碳问题,具有操作简单、生产效率高、产品精度高、工艺流程短、无污染与夹杂、性能优异等优点。
-
公开(公告)号:CN110756805A
公开(公告)日:2020-02-07
申请号:CN201911074525.9
申请日:2019-11-06
Applicant: 北京科技大学
IPC: B22F3/105 , B33Y10/00 , B33Y30/00 , B29C64/106 , B29C64/268
Abstract: 本发明提供了一种激光选区固化金属的3D打印装置,属于增材制造领域。包括3D打印控制装置、浆料打印喷头、固定架、弹簧夹、激光固化装置、打印平台、直流电源。将金属粉末与液态光敏树脂混合成具有适当固相体积的浆料,采用了特殊设计制造的浆料打印喷头,通过螺旋挤压装置将浆料从一定直径的喷嘴中挤压出来;同时,在浆料流线挤出分散累积的过程中,采用精细的激光束选区同步扫描到浆料流线平面上,使其局部快速固化成形,循环往复,从而可以实现一定形状的金属零件的成形。本发明能够直接成型高精度的复杂材料零件,成型速度快,对原材料的要求低,适应性广,成本低廉,对工作环境没有特殊要求。
-
公开(公告)号:CN109712798A
公开(公告)日:2019-05-03
申请号:CN201910016330.2
申请日:2019-01-08
Applicant: 北京科技大学
IPC: H01F41/02
Abstract: 本发明提供了一种3D打印制备粘结钕铁硼磁体的方法,属于粉末冶金的领域。采用液态光敏树脂制备钕铁硼的打印浆料,通过超声振动控制系统实现高固含量浆料的打印,从而确保浆料的成形性、打印磁体的精度和高致密度,并采用取向充磁系统有选择性地实现磁体的打印取向成型,最终得到复杂形状的高性能粘结钕铁硼零件。采用液态光敏树脂制备3D打印的钕铁硼料浆,实现光固化快速成型。本发明制得的粘结钕铁硼磁体具有良好的磁性能和高致密度,且可实现各种复杂形状的近净成型,省去了磁体复杂零件的切削加工,大大降低了生产成本且节约了资源。
-
-
-
-
-
-
-
-
-