-
公开(公告)号:CN106244927B
公开(公告)日:2018-04-03
申请号:CN201610875341.2
申请日:2016-09-30
Applicant: 北京理工大学
Abstract: 本发明涉及一种低密度超高强度钢及其制备方法,属于金属材料领域。所述钢的化学成分质量百分比为:C 0.6‑1.6%,Al 5‑10%,Mn 15‑30%,Nb 0.01‑0.2%,Mo 0.1‑3%,Cr≤5%,Ti≤0.5%,Si≤2%,B≤0.6%,其余为Fe及其他不可避免的杂质元素。本发明通过复合添加Nb和Mo析出细小弥散的NbMoC相,协同κ‑碳化物进行析出强化,拉伸强度达1350MPa以上,延伸率达10%以上,密度为6.8‑7.0g/cm3,且成本低,适用于车辆、飞机等交通运输工具的轻量化,符合节能减排的发展理念。
-
公开(公告)号:CN103418786B
公开(公告)日:2016-05-25
申请号:CN201310410517.3
申请日:2013-09-10
Applicant: 北京理工大学
Abstract: 本发明公开了一种低W-W连接度W-Cu-Ni的合金材料,其具体制备工艺为:用化学镀的方法在微米级钨粉表面镀镍包覆层,将表面包覆镍层的钨粉与铜粉配料、混合,再对混合均匀后的粉末进行放电等离子烧结(SPS),制备出具有高致密度的低W-W连接度W-Cu-Ni合金材料。其优点在于:1.镍包覆层能提高钨相与铜相的界面结合强度,并起到活化烧结,降低烧结温度的作用,同时有利于提高材料的致密度;2.通过本发明所述的制备方法能够制备出致密度在97.5%以上和W-W连接度小于30%的W-Cu-Ni合金材料,材料具有良好的拉伸力学性能。本发明所述的W-Cu-Ni合金材料具有优异的力学性能,适用于航空航天和兵器领域。
-
公开(公告)号:CN102943225B
公开(公告)日:2015-09-02
申请号:CN201210382501.1
申请日:2012-10-11
Applicant: 北京理工大学
IPC: C22C49/06 , C22C49/14 , C22C47/04 , C22C47/14 , C22C47/20 , C22C101/10 , C22C121/02
Abstract: 本发明公开了一种利用表面电镀铜后的碳纤维布与铝合金放电等离子烧结(SPS)后而得到的碳纤维布/铝合金复合材料及其制备方法。该方法的具体步骤是:步骤1、碳纤维布预处理;步骤2、碳纤维布包覆铜:利用电镀的方法将铜包覆于碳纤维布表面;步骤3、制备预制件:将镀铜后的碳纤维布与铝合金薄片交替叠放,制成预制件,制作时需按碳纤维布在铝合金内的含量及排布要求进行制作;步骤4、SPS加压烧结预制件,最终得到需要的碳纤维布/铝合金复合材料。本发明制备的碳纤维布/铝合金材料复合良好,碳纤维布的体积含量和分布可控。该复合材料具有高比模量、高韧性、高比强度和优良抗剪切能力,适用于建筑领域及防护领域。
-
公开(公告)号:CN116083798A
公开(公告)日:2023-05-09
申请号:CN202211688752.2
申请日:2022-12-27
Applicant: 北京理工大学唐山研究院
Abstract: 本发明公开了一种基于非均质锰分布的中低碳超细贝氏体钢及其制备方法。所述制备方法包括珠光体化‑快速奥氏体化‑贝氏体化的过程,最终可获得由纳米尺度的贫Mn贝氏体铁素体板条和富Mn残余奥氏体片层相互交叠组成的组织。本发明的制备方法大幅缩短了超细贝氏体转变的时间,同时避免了中低碳贝氏体转变过程中的组织粗化,使产品获得了良好的强塑性匹配。本发明的制备方法成本低廉,获得的产品焊接性能和力学性能优异。
-
公开(公告)号:CN113025794B
公开(公告)日:2022-02-15
申请号:CN202110253521.8
申请日:2021-03-09
Applicant: 北京理工大学
IPC: C21D8/00 , C21D6/00 , C21D1/18 , C22C38/38 , C22C38/06 , C22C38/22 , C22C38/26 , C22C38/28 , C22C38/02 , C22C38/32 , B21B3/00 , B21B37/00 , B21B37/74
Abstract: 本发明涉及一种提高Fe‑Mn‑Al‑C系低密度钢强度的方法,属于金属材料技术领域。所述方法步骤包括:首先对Fe‑Mn‑Al‑C系钢件进行固溶处理然后进行轧制变形处理,轧制压下量为20%‑70%,终轧温度为500‑850℃;最后于350‑600℃保温0.5‑3h进行时效处理,时效处理结束后于空气中冷却至室温,得到一种低密度高强度Fe‑Mn‑Al‑C系钢。本发明所述方法得到的Fe‑Mn‑Al‑C系低密度高强度钢的屈服强度达1370‑1900MPa,实现超高强度水平,同时延伸率保持在8%以上。
-
公开(公告)号:CN113025859B
公开(公告)日:2021-12-14
申请号:CN202110244545.7
申请日:2021-03-05
Applicant: 北京理工大学
Abstract: 本发明涉及金属材料技术领域,具体涉及一种高强度高塑性钨合金材料及其制备方法。以所述材料的组成成分总质量为100%计,各成分及其质量百分数为:W粉85~97%、Fe‑Mn‑Al‑C系预合金粉3~15%、Y2O3粉0~1%,W粉的粒径≤10μm,Fe‑Mn‑Al‑C系预合金粉的粒径≤10μm,Y2O3粉的粒径≤3μm;所述材料以纳米碳化物强化的奥氏体相合金为基体,当Y2O3含量为0时,W均匀分布在所述基体上;当Y2O3含量不为0时,W和Y2O3均匀分布在所述基体上。所述材料经球磨混粉、热等静压烧结和固溶时效处理后得到,具有致密度高、组织均匀、优异的强度和塑性匹配、热膨胀系数小和耐蚀性好的特点。
-
公开(公告)号:CN111155025B
公开(公告)日:2021-06-15
申请号:CN202010066106.7
申请日:2020-01-20
Applicant: 北京理工大学
IPC: C22C33/04 , C21D8/02 , C21D9/00 , C21D1/18 , C21D6/00 , C22C38/02 , C22C38/04 , C22C38/06 , C22C38/44 , C22C38/46 , C22C38/48 , C22C38/50 , C22C38/52 , C22C38/54
Abstract: 本发明属于钢铁材料技术领域,涉及一种高强度高韧性且抗高速冲击的贝氏体钢及其制备方法。以所述钢的总质量为100%计,所述钢的化学成分质量百分比为:C 0.1~0.3%,Si 0.10~0.50%,Mn 0.9~1.4%,Cr 0.1~0.5%,Mo 0.1~0.2%,Ni 0.02~0.20%,Al 0.01~0.05%,Co 0.01~0.10%,Nb≤0.060%,Ti≤0.30%,V 0.005~0.10%,B 0.0005~0.005%,余量为铁和不可避免的杂质。通过冶炼、真空处理、铸造、加热轧制及轧后快速冷却和回火后制备得到的贝氏体钢同时具有高强度、高韧性和抗高速冲击性能。
-
公开(公告)号:CN102912263B
公开(公告)日:2015-09-02
申请号:CN201210382504.5
申请日:2012-10-11
Applicant: 北京理工大学
IPC: C22C47/04 , C22C47/14 , C22C49/14 , C22C49/11 , C22C121/02 , C22C101/10
Abstract: 本发明公开了一种碳纤维增强钛合金复合材料及其制备方法。该方法的具体步骤是:步骤1、碳纤维预处理;步骤2、碳纤维表面化学镀铜:利用化学镀方法将铜包覆于碳纤维表面;步骤3、化学气相沉积纯钨:在包覆了铜的碳纤维表面通过化学气相沉积法获得钨沉积层;步骤4、按设计要求通过裁剪的方法获得合适长度的碳纤维;步骤5、按设计的钛合金成分要求混粉后与碳纤维一同装入压模内热压成型并烧结最终得到需要形状的碳纤维增强钛合金复合材料。本发明制备的碳纤维增强钛合金材料复合良好,钛合金成分可调,碳纤维的分布可控,碳纤维不会发生脱碳。该复合材料具有高的比模量,同时具有低密度、高的比强度、冲击韧性和良好的抗绝热剪切破坏能力,是一种高性能的结构材料。
-
公开(公告)号:CN118086784A
公开(公告)日:2024-05-28
申请号:CN202410511235.0
申请日:2024-04-26
Applicant: 北京理工大学
Abstract: 本发明涉及一种高强高韧高塑性的Fe‑Mn‑Al‑Mo‑C奥氏体低密度钢及其制备方法,属于黑色金属材料技术领域。通过对Fe‑Mn‑Al‑Mo‑C奥氏体低密度钢中C、Al和Mo的成分含量进行调控,并采用热轧工艺对锻造后的钢板进行处理,通过控制每道次的轧制压下量及终轧温度,并采用空冷的冷却方式,既能完全抑制晶界κ‑碳化物析出,又能保证不析出富Mo碳化物,最终得到的Fe‑Mn‑Al‑Mo‑C奥氏体低密度钢兼具高强度、高韧性和高塑性。
-
公开(公告)号:CN116083798B
公开(公告)日:2023-12-05
申请号:CN202211688752.2
申请日:2022-12-27
Applicant: 北京理工大学唐山研究院
Abstract: 本发明公开了一种基于非均质锰分布的中低碳超细贝氏体钢及其制备方法。所述制备方法包括珠光体化‑快速奥氏体化‑贝氏体化的过程,最终可获得由纳米尺度的贫Mn贝氏体铁素体板条和富Mn残余奥氏体片层相互交叠组成的组织。本发明的制备方法大幅缩短了超细贝氏体转变的时间,同时避免了中低碳贝氏体转变过程中的组织粗化,使产品获得了良好的强塑性匹配。本发明的制备方法成本低廉,获得的产品焊接性能和力学性能优异。
-
-
-
-
-
-
-
-
-