基于激光调频连续波正反向调谐色散对消方法及装置

    公开(公告)号:CN111781607B

    公开(公告)日:2023-03-03

    申请号:CN202010788052.5

    申请日:2020-08-07

    Abstract: 本发明涉及一种基于激光调频连续波正反向调谐色散对消方法及装置;通过外腔可调谐激光器进行正反向调谐,得到正向调谐的测量信号以及反向调谐的测量信号;分别提取正反向测量信号的相位,并进行相位展开;通过将两个信号的相位相加求平均,实现色散相位的抵消,得到降低色散影响后的测量信号;对测量信号进行ChirpZ变换,即可得到降低色散影响的目标距离。本方法可以不需要预先标定装置的色散系数,也不需要循环迭代补偿,单次测量即可完成系统色散补偿,得到降低色散影响的目标距离,提高了FMCW激光测距装置的稳定性及测量精度。

    基于哈特曼光线追迹的非均匀介质场的测量方法

    公开(公告)号:CN109883996B

    公开(公告)日:2021-06-29

    申请号:CN201910164089.8

    申请日:2019-03-05

    Abstract: 本发明公开了一种基于哈特曼光线追迹的非均匀介质场的测量方法,包括采用彩色三步移相法对影像进行计算并得到相位信息,采用反积分曲线三维重建算法计算得到测量空间内部存在的气液混合介质的折射率的变化数据;本发明采用彩色三步移相法,结合三维非均匀介质场的反积分曲线三维重建算法,通过投影屏和远心光学系统的组合设置,实现了对非均匀介质场的测量光线的准确追迹及对三维空间折射率的瞬态折射特性测量,大大提高了测量精确度和效率;并且基于哈特曼光线追迹的非均匀介质场的测量系统整体设计精密,测量精度高,成本较低,应用范围广,具有重要的理论意义和工程应用价值,适合推广应用。

    激光扫频干涉测量的非线性校正与量程扩展装置及方法

    公开(公告)号:CN113029034A

    公开(公告)日:2021-06-25

    申请号:CN202110337099.4

    申请日:2021-03-26

    Abstract: 本发明提供一种用于激光扫频干涉测量的非线性校正与量程扩展装置及方法。装置中的分束器将可调谐激光器发出的激光分为两束进入主光路和辅助光路,由于可调谐激光器发出频率可被线性调制的信号,并且主光路中的延迟单模光纤和辅助光路中的延迟单模光纤的由于长度不同,导致双光路中的信号形成光程差,从而构成基本的迈克尔逊干涉仪,产生干涉现象。数据采集卡将采集到的信息数据输送至计算机,再结合扩相频率采样法对信号做处理,即通过对辅助干涉仪拍相位的扩展,使系统满足奈奎斯特采样定律,完成对测量信号拍频非线性校正。有益效果:利用扩相频率采样法对信号做处理,可实现测量信号的拍频非线性校正,提高测量精度,并解决量程受限的问题。

    一种光学偏折瞬态测量方法

    公开(公告)号:CN110793440B

    公开(公告)日:2021-05-18

    申请号:CN201911062078.5

    申请日:2019-11-01

    Abstract: 本发明提供一种基于光学偏折的瞬态测量方法,涉及测量技术领域。本方法利用正交方向的频率载波条纹对x和y方向的四步移相条纹图(一共八幅移相图案)分别进行单独调制,将不同方向的四幅移相条纹的组合图案耦合到不同的颜色通道,最终得到一幅彩色图,即投影屏投影的图案。利用相机采集经过待测元件偏折后的变形图案,采用颜色分离,分离出x、y方向的复合图案,再通过解调操作得到八幅移相图案,即x、y两个方向各四幅移相条纹图,从中经过相位解调相关算法得到相位信息,经过计算得出被测波面的斜率,最后通过积分算法得到重构的波面。本方法解决了传统光学偏折检测中需要在待测元件上连续投影移相条纹而无法进行瞬态测量的技术问题。

    基于彩色三步移相技术的哈特曼光线追迹方法

    公开(公告)号:CN109870424B

    公开(公告)日:2021-05-11

    申请号:CN201910163686.9

    申请日:2019-03-05

    Abstract: 本发明公开了一种基于彩色三步移相技术的哈特曼光线追迹方法,包括采用彩色三步移相法对影像进行计算并得到相位信息;本发明采用彩色三步移相法,结合三维非均匀介质场的反积分曲线三维重建算法,通过投影屏和远心光学系统的组合设置,实现了对非均匀介质场的测量光线的准确追迹及对三维空间折射率的瞬态折射特性测量,大大提高了测量精确度和效率;并且基于哈特曼光线追迹的非均匀介质场的测量系统整体设计精密,测量精度高,成本较低,应用范围广,具有重要的理论意义和工程应用价值,适合推广应用。

    基于哈特曼光线追迹的非均匀介质场的测量方法

    公开(公告)号:CN109883996A

    公开(公告)日:2019-06-14

    申请号:CN201910164089.8

    申请日:2019-03-05

    Abstract: 本发明公开了一种基于哈特曼光线追迹的非均匀介质场的测量方法,包括采用彩色三步移相法对影像进行计算并得到相位信息,采用反积分曲线三维重建算法计算得到测量空间内部存在的气液混合介质的折射率的变化数据;本发明采用彩色三步移相法,结合三维非均匀介质场的反积分曲线三维重建算法,通过投影屏和远心光学系统的组合设置,实现了对非均匀介质场的测量光线的准确追迹及对三维空间折射率的瞬态折射特性测量,大大提高了测量精确度和效率;并且基于哈特曼光线追迹的非均匀介质场的测量系统整体设计精密,测量精度高,成本较低,应用范围广,具有重要的理论意义和工程应用价值,适合推广应用。

    一种基于逆向哈特曼检测的自由曲面检测方法

    公开(公告)号:CN108507495A

    公开(公告)日:2018-09-07

    申请号:CN201810225433.5

    申请日:2018-03-19

    Abstract: 本发明提供一种基于逆向哈特曼检测的自由曲面检测方法,涉及测量技术领域。标定光路系统结构位置参数;建立被测物置为理想面的理想光路系统模型;依据理想光路系统模型,实验测得包含表面误差与结构误差的波前像差;调整理想光路系统模型参数,对测得数数据进行基于低、高阶像差分离优化的两步结构误差校正,得到标准光路系统模型;对标准光路系统模型进行光线追迹,测得只有由被测物表面误差造成的波前像差,计算得到被测物表面误差。本发明解决了现有技术中高精度检测自由曲面不具有通用性的技术问题。本发明有益效果为:对结构误差进行基于泽尼克拟合的两步优化,有效消除系统的结构位置误差,提升了系统检测精度,检测通用化。

    一种表面VxOy量子点修饰的N/S共掺杂碳复合材料及其制备方法和应用

    公开(公告)号:CN117912862A

    公开(公告)日:2024-04-19

    申请号:CN202311783065.3

    申请日:2023-12-22

    Abstract: 本发明提出了一种表面VxOy量子点修饰的N/S共掺杂碳复合材料的制备方法和用途。选取高蛋白质含量的生物质固体膜作为碳源和氮源,通过超声空化对生物质固体膜进行物理修饰;将低剂量的钒源和硫源试剂与空化后的生物质固体膜恒温磁力搅拌混合均匀,随后采用固液共热法在生物质固体膜细颗粒表面形成化学风化层。本发明以高蛋白质含量生物质固体膜为基底限制了金属氧化物聚集生长,且可实现化学试剂的高效利用,利用极低剂量的化学试剂制得了表面VxOy量子点修饰的N/S共掺杂碳复合材料,提供了新的量子点和富氮碳材料的制备思路,解决了化学试剂大量使用带来的成本和环境问题,同时用于超级电容器电极,显著提高了生物质衍生碳材料的电容特性。

    一种瞬态移相横向剪切干涉仪及测量方法

    公开(公告)号:CN111256582B

    公开(公告)日:2021-09-07

    申请号:CN202010075881.9

    申请日:2020-01-22

    Abstract: 本发明公开了一种瞬态移相横向剪切干涉仪,包括线性偏振器、偏振分光板、平面反射镜、四分之一波片、成像透镜以及偏振相机,其中,所述线性偏振器设置于偏振分光板的上方,所述四分之一波片、成像透镜、偏振相机依次设置于所述偏振分光板的一侧,所述偏振分光板与X轴方向呈45°夹角,所述平面反射镜设置于偏振分光板下方并与偏振分光板平行。相应的,本发明还公开了瞬态移相横向剪切干涉仪的测量方法。通过本发明提供了一种测量速度快、剪切量任意可调的瞬态移相横向剪切干涉仪。

    一种数字全息子孔径相位图自动拼接融合方法

    公开(公告)号:CN113129213A

    公开(公告)日:2021-07-16

    申请号:CN202010034447.6

    申请日:2020-01-14

    Abstract: 本发明公开了一种数字全息子孔径相位图自动拼接融合方法,包括:采用相位相关算法对相邻两子孔径相位图进行粗匹配,得到两子孔径相位图之间的初始相对位置和初始重叠区域;根据Harris算子分别对两幅子孔径相位图的初始重叠区域进行角点检测,并进行对应的角点匹配和误配点对的剔除,得到最佳Harris角点匹配点对;以得到的得到最佳Harris角点匹配点对为中心,分别在两幅子孔径相位图中选择相应的子图像块,并根据全匹配搜索算法(FS)计算得到最佳匹配点对及其对应的偏移量;根据两幅子孔径相位图、最佳匹配点对及其对应的偏移量,对两幅子孔径相位图进行平移,并对重叠区域进行相位融合,实现对数字全息子孔径相位图的自动拼接融合。

Patent Agency Ranking