一种层次化深度图卷积网络的训练方法

    公开(公告)号:CN115828996A

    公开(公告)日:2023-03-21

    申请号:CN202111102875.9

    申请日:2021-09-15

    Abstract: 本发明公开了一种层次化深度图卷积网络的训练方法,其特征在于,包括如下步骤:1)将目标领域的图中的节点特征输入待训练的层次化深度图卷积网络;2)每次迭代训练时,计算邻接矩阵A的对称归一化邻接矩阵3)判断当前迭代次数k是否小于设定迭代次数K,若小于则进行步骤4),否则结束训练;4)计算该层次化深度图卷积网络第k+1次迭代训练后输出的节点嵌入Zk+1,然后根据Zk+1计算该层次化深度图卷积网络第k+1次迭代训练后输出的各节点的类别predk+1;5)采用predk+1和节点真实标签的交叉熵作为损失函数,对该层次化深度图卷积网络的参数矩阵进行参数优化,迭代次数加一,返回步骤3)。

    一种基于音视频动态特征的流式匹配方法和装置

    公开(公告)号:CN112347272B

    公开(公告)日:2023-03-10

    申请号:CN202010987148.4

    申请日:2020-09-18

    Abstract: 本发明涉及一种基于音视频动态特征的流式匹配方法和装置。该方法通过区间索引树和两级哈希表,实现了快速判断每个任意偏移位置的数据是否有匹配的指纹,并输出匹配的状态,解决了音视频匹配速度慢、数据包随机到来并且长度不确定的问题,实现了实时匹配,提高了检测速度;该方法通过建立区间索引树的方式,实现了指纹特征的动态管理,用户可以根据需要动态增删指纹特征,解决了现有的技术方案中指纹特征固定不变,无法随用户需求发生变化的问题。本发明能够快速的检测音视频数据是否与指纹匹配,极大地提高了指纹匹配效率,能够适应高速大流量网络数据的环境,可以根据用户的需要改变指纹特征,满足了指纹特征可能发生变化的需求。

    面向DPI应用的HTTP流量分析处理的方法、系统及存储介质

    公开(公告)号:CN112995145B

    公开(公告)日:2022-05-31

    申请号:CN202110162792.2

    申请日:2021-02-05

    Abstract: 本发明公开一种面向DPI应用的HTTP流量分析处理的方法、系统及存储介质,属于网络安全领域,分为解析层和业务层,业务层将各个业务感兴趣的HTTP字段填写在配置文件中,并同时标明解析层到业务层的回调模式,然后将该配置文件发送给解析层进行业务注册;解析层根据配置文件中的各个业务感兴趣的HTTP字段,按照HTTP协议标准对HTTP流量进行解析,当完整解析出HTTP协议的一个字段时,查看业务层是否有业务注册和回调模式,根据回调模式,回调相应的业务至业务层。本发明采用对HTTP协议解析与HTTP业务分析进行分层的设计思想,通过灵活的字段注册的方式以及不同的回调模式,实现HTTP流量的分析处理。

    一种集成GBDT与神经网络的网络异常检测方法

    公开(公告)号:CN114169390A

    公开(公告)日:2022-03-11

    申请号:CN202111231657.5

    申请日:2021-10-22

    Abstract: 本发明公开一种集成GBDT与神经网络的网络异常检测方法,属于网络信息安全和机器学习的交叉技术领域。为了克服网络异常检测任务中传统机器学习算法和深度学习算法在处理表格数据上的不足,本发明选用专为表格数据设计的TabTransformer结构,同时为了应对网络异常检测中的类别不平衡问题,本发明采取了代价敏感的思想,引入了专门针对不平衡问题设计的Focal Loss损失函数,采取自适应学习策略,从参数搜索空间中自动选取Focal Loss的最佳参数。本发明既适用于二分类问题又适用于多分类问题。

    面向DPI应用的HTTP流量分析处理的方法、系统及存储介质

    公开(公告)号:CN112995145A

    公开(公告)日:2021-06-18

    申请号:CN202110162792.2

    申请日:2021-02-05

    Abstract: 本发明公开一种面向DPI应用的HTTP流量分析处理的方法、系统及存储介质,属于网络安全领域,分为解析层和业务层,业务层将各个业务感兴趣的HTTP字段填写在配置文件中,并同时标明解析层到业务层的回调模式,然后将该配置文件发送给解析层进行业务注册;解析层根据配置文件中的各个业务感兴趣的HTTP字段,按照HTTP协议标准对HTTP流量进行解析,当完整解析出HTTP协议的一个字段时,查看业务层是否有业务注册和回调模式,根据回调模式,回调相应的业务至业务层。本发明采用对HTTP协议解析与HTTP业务分析进行分层的设计思想,通过灵活的字段注册的方式以及不同的回调模式,实现HTTP流量的分析处理。

    基于异质图表示学习的恶意域名检测方法及装置

    公开(公告)号:CN112910929A

    公开(公告)日:2021-06-04

    申请号:CN202110312408.2

    申请日:2021-03-24

    Abstract: 本发明公开了一种基于异质图表示学习的恶意域名检测方法及装置,包括:通过采集DNS流量数据与构建域名白名单及域名黑名单,得到正常域名标注数据集与恶意域名标注数据集;根据DNS流量数据构造DNS场景异质图,获取各节点初始特征,并利用正常域名标注数据集与恶意域名标注数据集对DNS场景异质图中的域名节点标注;通过异质图神经网络半监督学习,获取DNS场景异质图中各未标注域名节点的预测结果。本发明通过提取DNS流量中的域名、IP地址等字段,构建DNS场景异质图,并采用异质图表示学习方法融合域名的属性特征及相关拓扑结构信息,可对具备完备关联模式的恶意域名、新出现的恶意域名及关联模式不完备的恶意域名进行识别,提升了恶意域名检测的准确率。

Patent Agency Ranking