-
公开(公告)号:CN112417673B
公开(公告)日:2022-02-22
申请号:CN202011294911.1
申请日:2020-11-18
Applicant: 中国核动力研究设计院
IPC: G06F30/20
Abstract: 本发明公开了一种压水堆首堆启动物理试验优化方法及装置,通过物理试验,获取压水堆核电厂首堆启动各控制棒组单独测量的积分价值;通过理论计算,获取各控制棒组正常插入次序的积分价值;获取各控制棒组单独测量的积分价值;获取从热态满功率到热态零功率由于反馈效应引入的正反应性;根据上述理论计算的结果,得到物理试验下各控制棒组正常插入次序的积分价值;再结合停堆棒组SA和D12棒束,验证N‑1棒积分价值的安全准则。本发明在启动物理试验不进行控制棒组正常插入次序的积分价值和卡单棒束积分价值测量的情况下实现N‑1棒组积分价值安全准则的验证,减少了试验带来的运行风险、提高了时效、避免了大量硼废水的产生。
-
公开(公告)号:CN110580957B
公开(公告)日:2021-04-06
申请号:CN201910886447.6
申请日:2019-09-19
Applicant: 中国核动力研究设计院
Abstract: 本发明公开了一种无外加中子源的反应堆装料启动方法:向反应堆堆芯注入适量的硼酸溶液,使其液位不高于堆芯活性段的下限;在堆芯最外层平均装入一圈燃料组件,堆芯外均匀分布若干个堆外源量程探测器;向反应堆堆芯进一步注入硼酸溶液,淹没反应堆堆芯,使堆外源量程探测器进入盲区;向堆芯装入剩余的燃料组件,完成装料;提高反应堆有效增值因数、降低次临界度,直至堆外源量程探测器可以获得有效计数,摆脱盲区;依靠堆外源量程探测器的计数确定堆芯状态,使堆芯达到反应堆临界。本发明用以解决现有技术中反应堆的启动依赖一次中子源,价格昂贵且源强衰减的问题,实现不需要使用一次中子源、二次中子源即可对反应堆进行装料和启动的目的。
-
公开(公告)号:CN111799000A
公开(公告)日:2020-10-20
申请号:CN202010488970.6
申请日:2020-06-02
Applicant: 江苏核电有限公司 , 中国核动力研究设计院 , 北京清达科宇科技有限公司 , 中国核电工程有限公司
Inventor: 潘泽飞 , 洪源平 , 周金满 , 陆双桐 , 李文雎 , 李文平 , 李海颖 , 蒋朱敏 , 蒋天植 , 刘国明 , 杨晓川 , 杨乃林 , 李载鹏 , 张琪 , 孙暖 , 刘敦彬 , 刘健 , 周克文 , 李宁 , 胥敬德
IPC: G21C1/30
Abstract: 本发明属反应堆工程设计运行领域,一种压水堆首炉堆芯无外加一次中子源的逼近临界方法,包括:步骤一:安装中子探测器监测装置;步骤二:确认源量程探测器监测装置及高灵敏度中子探测器监测装置通道中子计数响应性能;步骤三:堆外高灵敏度中子探测器监测装置内二次仪表上,进行临界安全监督参数计算及报警功能设置;步骤四:源量程探测器监测装置保护功能有效性确认;步骤五:电站数字式分布控制系统增设临界安全监督关键参数监测及报警功能;步骤六:反应堆升温升压;步骤七:增设小流量稀释控制转换点及稀释区间控制;步骤八:对影响反应堆次临界度设备隔离管控;步骤九:引导无外加一次中子源堆芯由深次临界状态过渡到临界状态。
-
公开(公告)号:CN107863165B
公开(公告)日:2019-12-24
申请号:CN201711293497.0
申请日:2017-12-08
Applicant: 中国核动力研究设计院
IPC: G21C19/20
Abstract: 本发明公开了一种压水堆堆芯的18个月换料多循环燃料的装载方法,压水堆堆芯由177组燃料组件组成,首循环燃料组件按U‑235富集度分为4区,4区的U‑235富集度分别为1.8%、2.4%、3.1%和3.9%,燃料组件分别为17、64、56和40组,首循环堆芯采用高泄漏装载模式,首循环堆芯采用的固体可燃毒物为一体化钆固体可燃毒物;从第二循环开始直至平衡循环,每次换料装入全堆1/3数量的新燃料组件,新燃料组件的U‑235富集度高于首循环燃料组件的U‑235富集度,该堆芯采用低泄漏装载模式,堆芯采用的固体可燃毒物为一体化钆固体可燃毒物。方法较快且较容易地实现了18个月长周期换料。
-
公开(公告)号:CN110580957A
公开(公告)日:2019-12-17
申请号:CN201910886447.6
申请日:2019-09-19
Applicant: 中国核动力研究设计院
Abstract: 本发明公开了一种无外加中子源的反应堆装料启动方法:向反应堆堆芯注入适量的硼酸溶液,使其液位不高于堆芯活性段的下限;在堆芯最外层平均装入一圈燃料组件,堆芯外均匀分布若干个堆外源量程探测器;向反应堆堆芯进一步注入硼酸溶液,淹没反应堆堆芯,使堆外源量程探测器进入盲区;向堆芯装入剩余的燃料组件,完成装料;提高反应堆有效增值因数、降低次临界度,直至堆外源量程探测器可以获得有效计数,摆脱盲区;依靠堆外源量程探测器的计数确定堆芯状态,使堆芯达到反应堆临界。本发明用以解决现有技术中反应堆的启动依赖一次中子源,价格昂贵且源强衰减的问题,实现不需要使用一次中子源、二次中子源即可对反应堆进行装料和启动的目的。
-
公开(公告)号:CN109473183A
公开(公告)日:2019-03-15
申请号:CN201811353025.4
申请日:2018-11-14
Applicant: 中国核动力研究设计院
Abstract: 本发明公开了一种超大型压水堆核电站堆芯布置,所述堆芯装载205、221或257组燃料组件,堆芯活性段高度介于3.66~4.27m;堆芯中按1/4旋转对称布置不少于85束控制棒组件;堆芯中燃料组件采用17×17栅格布置;所述超大型压水堆的额定热功率不低于3700MWt。本发明用于满足核电厂以热功率不低于3700MWt的水平实现特定循环长度的燃料管理的需求;利于提高反应堆功率、降低电厂比投资,增加年度发电量,有利于经济性的提高。
-
公开(公告)号:CN104952493B
公开(公告)日:2018-05-25
申请号:CN201510238451.3
申请日:2015-05-12
Applicant: 中国核动力研究设计院
IPC: G21C3/328
CPC classification number: Y02E30/38
Abstract: 本发明公开了一种177堆芯的控制棒分布结构,包括61束控制棒;61束控制棒分为8组,分别为R组、G1组、G2组、N1组、N2组、SA组、SB组和SC组;其中,R组为温度调节棒,G1组、G2组、N1组和N2组为功率补偿棒,SA组、SB组和SC组为停堆棒;G1组和G2组由灰体控制棒构成,其余组由黑体控制棒构成。.本发明通过对温度调节棒、功率补偿棒和停堆棒的数量设置,并进行合理分组,并对各个控制棒的空间位置进行优化,实现了在采用61束控制棒,不增加压力容器顶盖开孔数量的情况下,为177堆芯提供了足够的停堆裕量,停堆裕量满足年换料及18个月换料的安全需求。
-
公开(公告)号:CN104952493A
公开(公告)日:2015-09-30
申请号:CN201510238451.3
申请日:2015-05-12
Applicant: 中国核动力研究设计院
IPC: G21C3/328
Abstract: 本发明公开了一种177堆芯的控制棒分布结构,包括61束控制棒;61束控制棒分为8组,分别为R组、G1组、G2组、N1组、N2组、SA组、SB组和SC组;其中,R组为温度调节棒,G1组、G2组、N1组和N2组为功率补偿棒,SA组、SB组和SC组为停堆棒;G1组和G2组由灰体控制棒构成,其余组由黑体控制棒构成。本发明通过对温度调节棒、功率补偿棒和停堆棒的数量设置,并进行合理分组,并对各个控制棒的空间位置进行优化,实现了在采用61束控制棒,不增加压力容器顶盖开孔数量的情况下,为177堆芯提供了足够的停堆裕量,停堆裕量满足年换料及18个月换料的安全需求。
-
公开(公告)号:CN119670374A
公开(公告)日:2025-03-21
申请号:CN202411697834.2
申请日:2024-11-26
Applicant: 中国核动力研究设计院
IPC: G06F30/20 , G21C17/00 , G06Q50/06 , G06F119/06
Abstract: 本申请属于负荷跟踪模拟技术领域,旨在解决手动模拟多时间步连续负荷跟踪面临的巨大工作量问题。本申请公开了一种基于Mode‑C控制与运行模式下的负荷跟踪自动模拟方法,自动控制不调硼负荷跟踪过程堆芯反应性及轴向功率偏差。本申请能实现不调硼负荷跟踪的理论模拟的自动化,减小人工模拟的工作负担,提升模拟准确性并显著模拟效率,能实现初始棒位及目标轴向功率偏差设置的自动寻优,提升模拟计算的合理性。
-
公开(公告)号:CN119670349A
公开(公告)日:2025-03-21
申请号:CN202411609045.9
申请日:2024-11-12
Applicant: 中国核动力研究设计院
IPC: G06F30/20 , G16C20/10 , G06F17/10 , G06F119/04 , G06F119/08
Abstract: 本发明涉及核电厂中子学参数技术领域,提供一种包络核电厂多种运行方式的堆芯中子学参数计算方法,包括如下步骤:获取各种运行工况在代表性循环中的第一中子学参数数值集;基于第一中子学参数数值集获取能够包络第一中子学参数数值集中所有数值的中子学参数包络值;基于中子学参数包络值获取其与第一中子学参数数值集中正常功率运行工况对应数值的相对偏差值集;基于相对偏差值集中的最大包络值获取敏感系数;并基于敏感系数其他循环中正常运行工况的第一中子学参数获得涵盖各运行工况下的第一中子学参数包络值。该方法通过采用敏感系数对不同运行方式的安全验证所需参数计算进行简化,可以大大减少后续中子学参数的计算和安全分析的工作量。
-
-
-
-
-
-
-
-
-