-
公开(公告)号:CN105936978A
公开(公告)日:2016-09-14
申请号:CN201610485525.8
申请日:2016-06-24
Applicant: 东北大学
Abstract: 本发明属于冶炼高氮钢技术领域,具体涉及一种加压电渣重熔气相渗氮冶炼高氮奥氏体不锈钢的渣系。本发明渣系的化学成分质量百分比为:CaF2:57~62%,CaO:16~20%,Al2O3:12~16%,MgO:3~6%,SiO2:0.5~1.5%,其余为杂质,杂质含量不超过0.8%;其中,CaO/Al2O3为1.00~1.67。通过控制CaO,调节CaO/Al2O3的比例关系,以及配置合理含量的CaF2、MgO和SiO2,提高了渣系的氮容和氮渗透性,可有效提升奥氏体不锈钢的氮含量,并可使氮沿锭身均匀分布,有利于获得高品质高氮奥氏体不锈钢。
-
公开(公告)号:CN105925815A
公开(公告)日:2016-09-07
申请号:CN201610472661.3
申请日:2016-06-24
Applicant: 东北大学
CPC classification number: Y02P10/253 , C22B9/18 , C22C33/06 , C22C38/001 , C22C38/02 , C22C38/04 , C22C38/44
Abstract: 本发明属于高氮钢冶炼领域,具体涉及一种加压电渣重熔气相渗氮冶炼高氮马氏体不锈钢的方法,该方法根据目标钢种成分,利用真空感应炉冶炼无气孔、无氮的高纯净马氏体不锈钢自耗电极;在氮气保护下采用固态起弧的方法进行起弧造渣;向熔炼室内充入氮气增压至2~5MPa,同步提升冷却水压力,采用低熔速在38~43V、2900~4000A下冶炼;对于目标氮含量高于0.3%的钢种,按上述步骤进行第二次加压电渣重熔。其优点是通过合理控制工艺参数及氮气压力,在低熔速下实现了氮合金化的高效进行,可制备出氮含量较高、成分均匀、组织性能优异的高氮马氏体不锈钢。
-
公开(公告)号:CN104561561B
公开(公告)日:2016-07-27
申请号:CN201410734640.5
申请日:2014-12-04
Applicant: 东北大学
IPC: C22B7/04
CPC classification number: Y02P10/212
Abstract: 一种含钡废渣无害化处理方法,属于含钡废渣综合利用技术领域,特别地是能够解决冶金生产过程中产生的含钡废渣对环境造成污染的问题;其特点在于将含钡废渣与盐酸混合后,于50℃~70℃条件下搅拌浸出,钡的浸出率可达80%以上;再利用硫酸进一步处理浸出后的滤渣,能有效回收含钡废渣中钡和钙等元素,从而解决含钡废渣的环境污染问题。
-
公开(公告)号:CN105463298A
公开(公告)日:2016-04-06
申请号:CN201510864235.X
申请日:2015-12-01
Applicant: 东北大学
IPC: C22C33/06 , C22C38/46 , C22C38/44 , C22C38/40 , C22C38/24 , C22C38/22 , C21C7/06 , C21C7/064 , C21C7/10
CPC classification number: C22C33/06 , C21C7/0006 , C21C7/06 , C21C7/064 , C21C7/10 , C21D2211/008 , C22C38/001 , C22C38/22 , C22C38/24 , C22C38/40 , C22C38/44 , C22C38/46
Abstract: 本发明公开了一种加压感应冶炼低铝高氮马氏体不锈钢的方法,属于冶金领域,适用于冶炼包括0.1~0.6%的碳、0~0.5%的锰、12~24%的铬、不超过1%的硅、0~3%的钼、0.1~0.6%的氮、0~2%的镍、0~1%的钒、不超过0.02%的铝、不超过0.002%的硫、余量为铁及不可避免的杂质的高氮马氏体不锈钢,具体包括:配料、布料;抽真空后升温;原料熔清后充高纯氩气,加石墨脱氧;抽真空至10Pa加工业硅脱氧;充氮气合金化;加镍镁合金和稀土保温5~10min;充氮浇铸等。
-
公开(公告)号:CN105445322A
公开(公告)日:2016-03-30
申请号:CN201510869372.2
申请日:2015-12-02
Applicant: 东北大学
IPC: G01N25/20
Abstract: 本发明属于钢铁冶金技术领域,涉及一种加压条件下界面换热系数的测量方法,包括:垂直于铸模侧壁在铸模上钻2个通孔、2个盲孔;在四个孔中分别安插外接导线的双铂铑热电偶,用刚玉的双通管和石棉细绳缠绕相结合的方式进行固定,裸露热电偶焊接测温点;在铸模中注入钢液,钢液凝固过程中,热电偶测得的数据通过温度数据采集仪输入计算机;运用Fortran语言,结合Beck非线性估算完成了后续界面换热系数计算源代码的编写;并利用ProCast对其进行校验。本发明提供的一种加压条件下界面换热系数的测量方法,可适用于高温、高压、测温环境恶劣的加压炼钢过程,简便可靠,安全准确。
-
公开(公告)号:CN118028714A
公开(公告)日:2024-05-14
申请号:CN202410375827.4
申请日:2024-03-29
Applicant: 辽宁省沈抚改革创新示范区东大工业技术研究院 , 东北大学
IPC: C22C38/44 , C22C38/02 , C22C38/04 , C22C38/58 , C22C38/06 , C22C33/04 , C21C7/04 , C21C7/06 , C21C7/10 , C21C7/064 , C22B9/18 , C22B9/00
Abstract: 本发明提供了一种超纯316L(N)奥氏体不锈钢及其制备方法,涉及冶金技术领域。本发明提供了VIM+IESR双联冶炼工艺。其中,VIM采用“先加FeO控铝、再经真空碳脱氧预处理、最后Mg+Ca复合脱氧脱硫”的超纯净联合控制工艺,IESR进一步除杂及净化,能实现316L(N)奥氏体不锈钢控铝及深脱O、深脱S和夹杂物有效改性处理,从而满足半导体装备和核电等领域对超纯度不锈钢材料的迫切需求。
-
公开(公告)号:CN117987747A
公开(公告)日:2024-05-07
申请号:CN202410375876.8
申请日:2024-03-29
Applicant: 东北大学 , 辽宁省沈抚改革创新示范区东大工业技术研究院
Abstract: 本发明提供了一种超高纯316L不锈钢及其制备方法,属于冶金技术领域。本发明提供了VIM(先加FeO控铝、再经真空C脱氧预处理、最后Mg+Ca复合处理深脱O和深脱S)+VAR双联冶炼工艺,实现了超高纯316L不锈钢控铝及深脱O、深脱S、深脱H和夹杂物高效去除,从而满足半导体装备对超高纯度不锈钢材料的迫切需求。
-
公开(公告)号:CN113234894B
公开(公告)日:2022-02-11
申请号:CN202110530126.X
申请日:2021-05-14
Applicant: 东北大学
IPC: C21C7/064 , C21C7/06 , C21C7/00 , B22D11/22 , B22D27/04 , C22C38/02 , C22C38/04 , C22C38/58 , C22C38/44 , C22C38/42 , C22C38/48
Abstract: 本发明属于含氮双相不锈钢生产技术领域,提供了一种改善含氮双相不锈钢耐腐蚀性能的方法。本发明在含氮不锈钢中添加微量铌,易析出含铌Z相包裹夹杂物,提升双相不锈钢的耐腐蚀性能。本发明通过优化精炼工艺使夹杂物细小弥散化,易于被含铌相包裹;本发明在铸造过程中,在含铌相析出的温度区间所对应的区域内,控制冷却强度为铸造过程中最低的冷却强度,促进含铌相以夹杂物为核心析出,提高含铌相包裹夹杂物比例;随后提高冷却强度,避免含铌相过分长大和有害相析出。本发明提供的方法能有效避免了由夹杂物引发的腐蚀问题,为该类材料在典型环境中长寿命、稳定服役提供了良好保障。
-
公开(公告)号:CN113234894A
公开(公告)日:2021-08-10
申请号:CN202110530126.X
申请日:2021-05-14
Applicant: 东北大学
IPC: C21C7/064 , C21C7/06 , C21C7/00 , B22D11/22 , B22D27/04 , C22C38/02 , C22C38/04 , C22C38/58 , C22C38/44 , C22C38/42 , C22C38/48
Abstract: 本发明属于含氮双相不锈钢生产技术领域,提供了一种改善含氮双相不锈钢耐腐蚀性能的方法。本发明在含氮不锈钢中添加微量铌,易析出含铌Z相包裹夹杂物,提升双相不锈钢的耐腐蚀性能。本发明通过优化精炼工艺使夹杂物细小弥散化,易于被含铌相包裹;本发明在铸造过程中,在含铌相析出的温度区间所对应的区域内,控制冷却强度为铸造过程中最低的冷却强度,促进含铌相以夹杂物为核心析出,提高含铌相包裹夹杂物比例;随后提高冷却强度,避免含铌相过分长大和有害相析出。本发明提供的方法能有效避免了由夹杂物引发的腐蚀问题,为该类材料在典型环境中长寿命、稳定服役提供了良好保障。
-
公开(公告)号:CN113215478A
公开(公告)日:2021-08-06
申请号:CN202110530117.0
申请日:2021-05-14
Applicant: 东北大学
Abstract: 本发明属于超级不锈钢技术领域,提供了一种提升超级不锈钢抗高温氧化性能的方法。本发明中,硅和钇易与氧反应生成SiO2和Y2O3,SiO2和Y2O3能够为Cr2O3的形成提供有利形核位点,促进细小致密Cr2O3保护层的形成,从而降低氧化层中缺陷;且细小致密Cr2O3保护层的形成可有效提升氧化层的保护性和粘附性。在预氧化中,硅易优先氧化生成致密的SiO2层,阻塞元素扩散,减少MoO3的生成;钇易在晶界偏聚,导致晶界周围形成明显势垒,从而阻碍大尺寸Mo原子的外扩散,显著减轻MoO3挥发,MoO3挥发减轻可显著降低对氧化层的破坏作用,进一步提升氧化层的保护性,有效阻碍空气渗氮过程。
-
-
-
-
-
-
-
-
-