-
公开(公告)号:CN110357633B
公开(公告)日:2021-05-18
申请号:CN201910625528.0
申请日:2019-07-11
Applicant: 上海交通大学
IPC: C04B35/56 , C04B35/626 , C04B35/65
Abstract: 本发明涉及一种室温快速制备钛铝碳陶瓷的方法,将氧化石墨烯溶于去离子水中,加入L‑抗坏血酸,搅拌后控制温度为80‑120℃,充分发生还原反应,形成均匀结构的石墨烯水凝胶,干燥脱水得到石墨烯气凝胶;将石墨烯气凝胶、钛粉、铝粉均匀混合;将得到的混合粉体压制成坯体,以铂片作为电极,石墨柱作为加压触头,进行闪烧烧结处理,得到致密且均匀的钛铝碳陶瓷。与现有技术相比,本发明采用石墨烯辅助闪烧技术烧结制备致密度高,纯度高、晶粒尺寸均匀的钛铝碳陶瓷,并且制备工艺简单,效率高且可在室温下就可以完成。
-
公开(公告)号:CN106568526B
公开(公告)日:2019-09-27
申请号:CN201610910520.5
申请日:2016-10-19
Applicant: 上海交通大学 , 河南普莱姆涂层科技有限公司
IPC: G01K11/00
Abstract: 本发明涉及基于YSZ:Re荧光寿命测量的温度测量系统及其测试方法与应用,温度测量系统包括信号发射器、与信号发射器电连接的UV‑LED紫外光源、温度测量探针以及与温度测量探针配合使用的温度信号处理单元,该温度信号处理单元包括滤光镜、光电倍增管检测器、与光电倍增管检测器依次电连接的电阻箱及示波器,所述的温度测量探针的表面喷涂有YSZ:Re荧光层,并通过光纤分别与UV‑LED紫外光源、滤光镜相连;所述的温度测量系统用于测量航空发动机或地面燃气轮机处于工作状态下的温度。与现有技术相比,本发明具有测量温度高500‑1200℃,温度精确高的特点,根据改变温度测量探针的形状适应不同环境下的温度测量,不影响温度场,温度精度高,适用范围广。
-
公开(公告)号:CN109678511A
公开(公告)日:2019-04-26
申请号:CN201811576879.9
申请日:2018-12-23
Applicant: 上海交通大学
IPC: C04B35/56 , C04B35/58 , C04B35/622 , C04B35/64
CPC classification number: C04B35/5622 , C04B35/58078 , C04B35/622 , C04B35/64 , C04B2235/3244 , C04B2235/3804 , C04B2235/424 , C04B2235/5436 , C04B2235/5454 , C04B2235/6562 , C04B2235/6567 , C04B2235/6581 , C04B2235/666 , C04B2235/96 , C04B2235/9615
Abstract: 本发明涉及一种致密HfC(Si)-HfB2复相陶瓷的制备方法,将氧化铪粉体、纳米碳黑以及六硼化硅粉体按摩尔比为1~10∶1~20∶1~5的比例混合,获得混合粉体,经过进行球磨混合均匀,然后进行干燥,形成均匀的混合粉体;将得到的均匀混合粉体装入石墨模具中进行放电等离子体烧结,即原位碳-硼热还原反应-烧结致密化一步工艺完成,制备得到致密度为94.0%~100%且晶粒均匀弥散分布的HfC(Si)-HfB2复相陶瓷。与现有技术相比,本发明烧结制备得到物相组成和晶粒尺寸均匀分布,同时其陶瓷烧结体具有较高的致密性和断裂韧性,避免传统先制备粉体过程中难以控制成分和晶粒尺寸,后期烧结陶瓷过程中难以致密化。
-
公开(公告)号:CN104759241B
公开(公告)日:2017-03-01
申请号:CN201510115007.2
申请日:2015-03-16
IPC: B01J13/02
Abstract: 本发明涉及一种具有非对称结构的碳中空微球制备方法,包括前驱体浆料配制、前驱体制备、碳化烧结三个步骤,利用非溶剂致相分离原理收集滴落的中空微球前驱体液滴,使得滴落液滴外表面瞬间相分离固化,有效避免液滴变形和再融合,得到碳中空微球前驱体。之后的前驱体进行室温干燥和碳化烧结处理,最终得到碳中空微球。与现有技术相比,本发明制备的碳中空微球球形度好,球体尺寸和孔隙率可控,无需消耗大量能源和酸碱试剂,工艺简单易于实现大批量工业化生产。
-
公开(公告)号:CN104607057B
公开(公告)日:2017-01-04
申请号:CN201510043981.2
申请日:2015-01-28
Abstract: 本发明涉及具有高直度和强度的中空纤维膜支撑体的制备方法,通过干法球磨使增强剂均匀分散在氧化锆粉体中,通过机械搅拌使聚合物充分溶解于有机溶剂中形成聚合物溶液,把混合均匀的氧化锆粉体缓慢加入聚合物溶液中形成纺丝液,真空脱泡后经氮气由喷丝头挤出,坯体进入外凝固,固化后形成中空纤维膜前驱体并与水充分置换;通过磁场固定在室温干燥成直的中空纤维膜之后,置于高温炉中用氧化铝管固定烧结成中空纤维膜支撑体。与现有技术相比,本发明同时具有良好的力学性能和渗透性能,可直接用于微滤,也可作为超滤膜的支撑体,或者做膜反应器的载体。
-
公开(公告)号:CN106119765A
公开(公告)日:2016-11-16
申请号:CN201610485194.8
申请日:2016-06-28
Applicant: 上海交通大学
IPC: C23C4/134 , C23C4/073 , C04B35/16 , C04B35/622 , C04B35/626 , G01K7/02
CPC classification number: C23C4/06 , C04B35/16 , C04B35/62222 , C04B35/62605 , C04B2235/3224 , C04B2235/3225 , G01K7/02
Abstract: 本发明涉及一种温度敏感型Y2SiO5:Eu智能热障涂层的制备方法及其应用,将纳米氧化钇粉体、微米二氧化硅粉体、纳米氧化铕粉体、LiYO2粉体球磨并高温烧结得到陶瓷骨料粉Y2SiO5:Eu粉体,再分散于1‑甲基吡咯烷酮中,加入聚乙烯醇使其充分分散后超声震荡,再加入混合粘结剂并进行L‑S相转化制备,将得到的喷涂Y2SiO5:Eu微球在带有金属粘结层的高温合金试样表面喷涂形成厚度为3‑50μm的荧光层,再按照相同的喷涂工艺在荧光层的表面喷涂Y2SiO5涂层,即得到温度敏感型Y2SiO5:Eu智能热障涂层,可以在涂层温度测量中使用。本发明所制备的热障涂层具有表面均匀无微裂纹产生,且厚度均一无贯穿性孔洞、结合力较好的优点,另外还具有优异的荧光发光性能和温度荧光效应,可以应用于涂层的荧光测温领域。
-
公开(公告)号:CN106116698A
公开(公告)日:2016-11-16
申请号:CN201610453576.2
申请日:2016-06-21
Applicant: 上海交通大学
IPC: C04B41/87
CPC classification number: C04B41/5066 , C04B41/87
Abstract: 本发明涉及一种低热导SiCN‑Y2SiO5环境阻障复合涂层制备方法,将陶瓷骨料粉Y2SiO5和SiCN混合后分散于异丙醇溶剂中得到均匀的悬浮液,然后加入混合粘结剂,确保粘结剂在悬浮液中充分溶解混合,再结合静电纺丝技术以及超音速等离子喷涂制备得到SiCN‑Y2SiO5环境阻障复合外涂层。与现有技术相比,本发明具有较好的界面结合性能和低热导的特性,获得均匀多相的SiCN‑Y2SiO5复合环境阻障涂层,不需要后期热处理。
-
公开(公告)号:CN104387061B
公开(公告)日:2016-07-06
申请号:CN201410621503.0
申请日:2014-11-06
IPC: C04B35/48 , C04B35/10 , C04B35/622
Abstract: 本发明涉及蠕动泵辅助同轴微流控系统制备陶瓷中空微球方法,包括前驱体浆料配置、前驱体制备、烧结三个步骤,利用非溶剂致相分离原理收集滴落的陶瓷中空微球前驱体液滴,使得滴落液滴外表面瞬间相分离固化,有效避免液滴变形和再融合,得到陶瓷中空微球前驱体。之后的前驱体进行室温干燥和马弗炉烧结处理,最终得到陶瓷中空微球。与现有技术相比,本发明制备的陶瓷中空微球球形度好,球体尺寸和孔隙率可控,无需消耗大量能源和酸碱试剂,工艺简单易于实现大批量工业化生产。
-
公开(公告)号:CN104387061A
公开(公告)日:2015-03-04
申请号:CN201410621503.0
申请日:2014-11-06
Applicant: 上海交通大学 , 广州中国科学院先进技术研究所
IPC: C04B35/48 , C04B35/10 , C04B35/622
Abstract: 本发明涉及蠕动泵辅助同轴微流控系统制备陶瓷中空微球方法,包括前驱体浆料配置、前驱体制备、烧结三个步骤,利用非溶剂致相分离原理收集滴落的陶瓷中空微球前驱体液滴,使得滴落液滴外表面瞬间相分离固化,有效避免液滴变形和再融合,得到陶瓷中空微球前驱体。之后的前驱体进行室温干燥和马弗炉烧结处理,最终得到陶瓷中空微球。与现有技术相比,本发明制备的陶瓷中空微球球形度好,球体尺寸和孔隙率可控,无需消耗大量能源和酸碱试剂,工艺简单易于实现大批量工业化生产。
-
公开(公告)号:CN117451822A
公开(公告)日:2024-01-26
申请号:CN202311138393.8
申请日:2023-09-05
Applicant: 上海交通大学
IPC: G01N27/416
Abstract: 本发明涉及一种变表面能材料、变表面能微流道结构及汗液多模态生化信息传感器,该变表面能材料呈纳米‑微米‑介观尺度的层级梯度孔隙结构,化学式为C/(MN)O2‑δ;将变表面能材料填充至倒模法制备的微流道结构中,均匀分布后,得到变表面能微流道结构;将含有变表面能微流道结构的汗液采集系统与汗液传感器硬件系统芯片集成,获得监测汗液特征成分浓度变化的传感器。与现有技术相比,本发明中变表面能材料内均匀的分布在变表面能材料中疏水的碳和超亲水的(MN)O2‑δ与层级梯度孔隙结构协同作用赋予变表面能材料的变表面能性能;该变表面能微流道结构以变表面能材料内亲水性差异引发的表面能差作为微流体驱动力,替代传统电能和机械能,实现微流道的快速采集和传输。
-
-
-
-
-
-
-
-
-