-
公开(公告)号:CN111626361A
公开(公告)日:2020-09-04
申请号:CN202010466928.4
申请日:2020-05-28
Applicant: 辽宁大学
Abstract: 一种改进胶囊网络优化分层卷积的轴承亚健康识别方法,首先提出多输入分层的CNN,将数据输入到三个并行的不同大小的卷积核中处理,多角度的提取信号中的亚健康信息。然后将卷积后的结果输入到改进的胶囊网络进行亚健康识别,改进的胶囊网络采用修剪机制,根据阈值修剪耦合系数,同时使用参数修正的动态路由更新方法,确保动态路由的更新过程更加准确、稳定。最后得到实测的轴承数据。通过本发明方法能正确识别轴承数据的状态。
-
公开(公告)号:CN111581829A
公开(公告)日:2020-08-25
申请号:CN202010390588.1
申请日:2020-05-11
Applicant: 辽宁大学
Abstract: 一种改进差分灰狼算法优化支持向量回归的带钢厚度预测方法,包括以下步骤:1)分析采集的钢板数据信号;2)特征提取;3)数据归一化处理;4)带钢厚度预测;发明一种改进灰狼算法优化支持向量回归的带钢厚度预测方法,通过使用差分灰狼算法优化支持向量回归机的惩罚因子P和核函数系数σ,从而提高支持向量回归机性能。本发明使用的数据是来源于国内某钢厂的热连轧板带材实际生产数据。在带钢厚度预测模型构建模块中,训练中的样本集采用预处理后的特征向量并运用经改进差分灰狼算法优化的SVR方法训练带钢厚度预测模型。本发明通过上述步骤,提供一种预测误差小、预测精度高、鲁棒性好的带钢厚度预测方法。
-
公开(公告)号:CN108106844A
公开(公告)日:2018-06-01
申请号:CN201711169602.X
申请日:2017-11-22
Applicant: 辽宁大学
Abstract: 一种自适应参数调节的自动编码机的轴承故障诊断方法,基本步骤如下:1)对轴承振动信号的采样;2)对轴承信号的预处理;3)对深度网络代价函数,结点数与结构确定;4)参数自适应调节;5)故障划分。该方法首先对当前数据做出降噪处理,在降噪的同时也进行降维处理,并通过归一化后的‘干净’数据进入深度网络进行训练,通过稀疏自动编码器的特性,对边缘降噪走动编码器隐含层神经元进行稀疏性限制,结合Ada‑grad学习策略不断调节当前学习率的参数使其达到最优,从而达到一种快收敛,高精度的分类效果。最后通过与传统的自动编码机在轴承故障分类上进行对比,从而验证本发明的有效性和鲁棒性强的特点。
-
公开(公告)号:CN107766887A
公开(公告)日:2018-03-06
申请号:CN201710993558.8
申请日:2017-10-23
Applicant: 辽宁大学
CPC classification number: G06K9/6223 , G06N3/126
Abstract: 本发明涉及一种局部加权的不完整数据混杂聚类方法,其步骤如下:(1)收集数据;(2)数据处理:随机使部分数据缺少部分属性,变成不完整数据;(3)数据估算:利用改进的遗传算法中的个体对缺失数据进行估算;(4)聚类分析:对估算的数据进行模糊聚类分析;本发明提出了一种改进的遗传算法优化局部加权的不完整数据混杂聚类算法(GLW-FCM),达到搜索全部问题空间找到最优解的目的。使用UCI标准测试数据集包括:Iris、Bupa、Wine和Breast。将本文所提出的算法与其他五种算法在Matlab环境下做对比实验分析,改进后的算法在整个问题空间隐含了并行性进行搜索最佳解,获得了更加理想的聚类结果。有效降低了平均误分数、平均错误分类标准差和平均迭代终止次数。
-
公开(公告)号:CN107729943A
公开(公告)日:2018-02-23
申请号:CN201710992778.9
申请日:2017-10-23
Applicant: 辽宁大学
IPC: G06K9/62
CPC classification number: G06K9/6226 , G06K9/6256 , G06K9/6277
Abstract: 本发明涉及信息反馈极限学习机优化估值的缺失数据模糊聚类算法及其应用,基本步骤如下:1)采用互信息计算并选择相关度较高的数据属性,依据这些属性选择不完备数据中的完备数据作为FELM网络的训练样本;2)初始化FELM网络的输入权值ω以及偏置值b;3)根据最近邻规则对缺失属性进行预填充,并根据训练样本训练FELM网络得到的误差对预填充值进行调整直至找到合理的数值进行填补,进而得到恢复后的完整数据集;4)初始化模糊C均值算法的参数,聚类数目c,模糊系数m,阈值ε及隶属度划分矩阵U(0);5)通过迭代优化模糊C均值算法的隶属度划分矩阵U和聚类中心V得到最终的聚类结果。运用本方法能够充分利用数据样本及属性之间的关联性和完整数据样本及不完备数据样本的分布信息来得到更加合理的属性估值,从而使不完备数据集的聚类结果更加准确。
-
公开(公告)号:CN104200268B
公开(公告)日:2017-02-15
申请号:CN201410447364.4
申请日:2014-09-03
Applicant: 辽宁大学
Abstract: 本发明涉及一种基于粒子群优化极限学习机的带钢出口厚度预测方法,基本步骤如下:1)利用数据处理软件对带钢数据信号进行分析,选出对带钢出口厚度影响较大的4个参数,即轧制力,辊缝,轧制速度,电机电流,在带钢出口厚度的预测中作为输入变量输入到极限学习机中;2)用粒子群算法对极限学习机中的参数输入权值和隐含层偏置值进行选择优化,运用广义逆的方法分析决定输出权值,得到极限学习机中具有最小范数值的输出权值矩阵,以此得到最优的极限学习机参数;3)对上述所得最优的极限学习机进行模型构造;4)将步骤1)中的4个参数输入优化的极限学习机中对带钢出口厚度进行预测。运用本方法能够针对轧制生产过程进行分析,对轧件出口厚度进行预测,进而分析有关影响带钢质量的工艺参数并对轧制生产流程做出及时调整控
-
公开(公告)号:CN104200268A
公开(公告)日:2014-12-10
申请号:CN201410447364.4
申请日:2014-09-03
Applicant: 辽宁大学
Abstract: 本发明涉及一种基于粒子群优化极限学习机的带钢出口厚度预测方法,基本步骤如下:1)利用数据处理软件对带钢数据信号进行分析,选出对带钢出口厚度影响较大的4个参数,即轧制力,辊缝,轧制速度,电机电流,在带钢出口厚度的预测中作为输入变量输入到极限学习机中;2)用粒子群算法对极限学习机中的参数输入权值和隐含层偏置值进行选择优化,运用广义逆的方法分析决定输出权值,得到极限学习机中具有最小范数值的输出权值矩阵,以此得到最优的极限学习机参数;3)对上述所得最优的极限学习机进行模型构造;4)将步骤1)中的4个参数输入优化的极限学习机中对带钢出口厚度进行预测。运用本方法能够针对轧制生产过程进行分析,对轧件出口厚度进行预测,进而分析有关影响带钢质量的工艺参数并对轧制生产流程做出及时调整控制。
-
公开(公告)号:CN103544526A
公开(公告)日:2014-01-29
申请号:CN201310545273.X
申请日:2013-11-05
Applicant: 辽宁大学
IPC: G06N3/02
Abstract: 本发明涉及一种改进粒子群算法及其应用,改进粒子群算法步骤如下:(1)初始化算法;(2)随机初始化粒子的位置x和速度v;(3)初始化迭代次数t=1;(4)计算当前种群中每个粒子的适应值如果那么如果那么(5)如果适应值小于设定的最小误差ε或者达到最大迭代次数Maxiter,算法终止,否则,转向步骤(6);步骤(6)计算并更新粒子的速度和位置。(7)令迭代次数t=t+1,转向(4)。本发明改进的粒子群算法,使得在迭代初期,种群具有较大的自我学习能力和较小的社会学习能力,保持了种群的多样性,而在迭代后期,具有较小的自我学习能力和较大的社会学习能力,加快了种群的收敛速度。
-
公开(公告)号:CN103528820A
公开(公告)日:2014-01-22
申请号:CN201310471299.4
申请日:2013-10-10
Applicant: 辽宁大学
IPC: G01M13/04
Abstract: 本发明涉及一种基于距离评估因子势能函数的滚动轴承故障诊断方法,其步骤如下:(1)信号采样;(2)信号处理;(3)特征提取:提取处理后信号的11个时域特征参数和13个频域特征参数,用于生成诊断特征:正常特征、内圈特征、外圈特征、滚动体特征;(4)特征选择:提出距离评估因子作为特征参数评价准则,计算24个特征参数的距离评估因子值,并按照从大到小排序,选择前N个特征参数组成故障诊断的特征向量;(5)将上述特征向量输入势能函数算法进行故障诊断;本发明基于距离比思想,提出了距离评估因子评价准则,实现了故障特征参数的客观选择。此外,以二叉树结构方式应用势能函数分类算法,解决了势能函数在故障诊断中的多分类问题。
-
公开(公告)号:CN102788696A
公开(公告)日:2012-11-21
申请号:CN201210252961.2
申请日:2012-07-21
Applicant: 辽宁大学
Abstract: 本发明涉及一种基于改进BP神经网络和模糊集理论的轴承健康度评价方法。其步骤如下:1)采集原始信号;2)对步骤1)采集的信号进行FFT变换和滤波降噪处理;3)提取滤波降噪之后的振动信号的特征,获得特征参数;具体步骤如下:在FFT降噪处理的频域信号中选取7个状态参数;通过DI来评估状态参数的灵敏度;选取DI均值较大的四个参数作为BP神经网络输入层的特征参数;4)建立改进BP神经网络模型;5)将选定的四个特征参数输入改进BP神经网络进行状态识别,计算出健康度数值。运用本方法能够针对轴承运行状态进行分析,对轴承健康度进行分级,进而分析有关状态的情况及发展趋势并对滚动轴承做出干预决策。
-
-
-
-
-
-
-
-
-