自适应变分模式分解的机械微弱故障诊断方法

    公开(公告)号:CN108152025A

    公开(公告)日:2018-06-12

    申请号:CN201711376491.X

    申请日:2017-12-19

    Applicant: 苏州大学

    CPC classification number: G01M13/00

    Abstract: 本发明公开了一种自适应变分模式分解的机械微弱故障诊断方法。首先利用振动信号传感器收集机械设备动态信号;然后给定一个初始平衡参数以及设定变分模式分解方法提取分量的个数为一个;然后,利用变分模式分解方法对设备动态信号进行迭代分解,并以峭度或稀疏度等故障特征敏感参数为衡量指标计算分解出的模式分量,直到确定变分模式分解方法分解出含有故障信息的分量停止迭代分解;其次,将迭代分解出的干扰分量从原始设备动态信号中剔除。该发明克服了传统变分模式分解方法中最优平衡参数以及合理的分解模式分量的数目自适应选择的难题,能够自适应地提取出机械设备动态信号中的故障成分,且易操作,具有广泛应用的前景。

    基于脊线概率分布和局部波动的转频估计方法及检测装置

    公开(公告)号:CN107525674A

    公开(公告)日:2017-12-29

    申请号:CN201710392666.X

    申请日:2017-05-27

    Applicant: 苏州大学

    CPC classification number: G01M13/045

    Abstract: 本发明公开了一种基于脊线概率分布和局部波动特征的瞬时转频估计方法及检测装置,方法包括以下步骤:从振动信号中分离出低频区域,并采用快速谱峭度方法识别出共振频段,从而实现频段分离,并采用幅值累加平方算法对信号低频区域和共振频段时频分布特征进行增强;采用峰值搜索算法分别搜索信号低频区域和共振频段转频同步脊线,预估计出转频信息,对共振频段脊线同步化处理;利用基于概率分布的异常脊线区间定位方法,以确定脊线失效位置,改善对低频段和共振包络信号提取的脊线进行融合的结果;建立基于局部波动特性异常区间融合准则,引入标准差作为统计指标来指示脊线波动特征,作为异常数据段融合指标来评定融合结果,实现转频准确估计。

    基于Nesterov动量法的自适应深度置信网络轴承故障诊断方法

    公开(公告)号:CN106769048A

    公开(公告)日:2017-05-31

    申请号:CN201710030371.8

    申请日:2017-01-17

    Applicant: 苏州大学

    Abstract: 本发明涉及一种基于Nesterov动量法的自适应深度置信网络轴承故障诊断方法,包括:对滚动轴承不同健康状态的原始信号进行样本划分,生成训练样本;层叠受限玻尔兹曼机(Restricted Boltzmann Machine)建立DBN模型,加入Nesterov动量法和独立自适应学习率,将训练样本输入DBN模型,通过批量随机梯度下降法和贪婪逐层无监督算法预训练DBN模型;在预训练好的模型顶层加入Softmax分类器,使用监督算法单独训练Softmax分类器,通过反向传播算法(Back Propagation)和共轭梯度法进行全局微调,得到模型最优参数;输入未知状态信号,形成测试样本集,然后将测试样本输入上述训练好的DBN模型和Softmax分类器判断滚动轴承的故障类型。通过加入Nesterov动量法和独立自适应学习率,加快DBN预训练速度,提高故障分类精度。

    一种基于激光雷达与可见光通信的车辆驾驶意图识别方法

    公开(公告)号:CN117622142B

    公开(公告)日:2025-03-04

    申请号:CN202311538770.7

    申请日:2023-11-17

    Applicant: 苏州大学

    Abstract: 本发明涉及一种基于激光雷达与可见光通信的车辆驾驶意图识别方法,包括:通过激光雷达扫描检测范围内的车辆,生成点云数据;所述点云数据包括地面点云数据;所述检测范围为自车当前行驶车道与相邻车道;根据所述点云数据,对所述检测范围内的车辆进行检测,得到目标车辆;对所述目标车辆进行跟踪,生成目标车辆跟踪数据和目标车辆检测状态;判断是否获取到目标车辆基本信息,生成第一判断结果;根据所述第一判断结果,判断驾驶意图,生成第二判断结果;根据所述第二判断结果,生成预警;本发明可以在车辆即将换道并打开转向灯的情况下提前判断出车辆的换道意图,精准信息感知利于智能车辆科学准确的决策和安全控制,提高在途运行安全。

    一种高铁轮轨感知对抗学习损伤识别方法

    公开(公告)号:CN118690276B

    公开(公告)日:2024-12-13

    申请号:CN202411165214.4

    申请日:2024-08-23

    Applicant: 苏州大学

    Abstract: 本发明公开了高铁轮轨运维技术领域的一种高铁轮轨感知对抗学习损伤识别方法,方法包括:获取待识别的振动信号;将所述振动信号输入预训练的高铁轮轨损伤识别模型,所述高铁轮轨损伤识别模型包括深度特征提取器和开放式损伤分类器;利用高铁轮轨损伤识别模型,通过深度特征提取器提取振动信号的高维特征,基于所述高维特征通过开放式损伤分类器得到对应多种损伤类型的多维预测概率数据,并根据对应多种损伤类型的多维预测概率数据确定损伤类型识别结果。本发明能够解决通过深度学习进行高铁轮轨系统损伤识别时,新型损伤会被错误识别为已有的损伤类型而导致准确率下降,难以保障高铁运行的安全性和效率的技术问题。

    一种高铁轮轨感知对抗学习损伤识别方法

    公开(公告)号:CN118690276A

    公开(公告)日:2024-09-24

    申请号:CN202411165214.4

    申请日:2024-08-23

    Applicant: 苏州大学

    Abstract: 本发明公开了高铁轮轨运维技术领域的一种高铁轮轨感知对抗学习损伤识别方法,方法包括:获取待识别的振动信号;将所述振动信号输入预训练的高铁轮轨损伤识别模型,所述高铁轮轨损伤识别模型包括深度特征提取器和开放式损伤分类器;利用高铁轮轨损伤识别模型,通过深度特征提取器提取振动信号的高维特征,基于所述高维特征通过开放式损伤分类器得到对应多种损伤类型的多维预测概率数据,并根据对应多种损伤类型的多维预测概率数据确定损伤类型识别结果。本发明能够解决通过深度学习进行高铁轮轨系统损伤识别时,新型损伤会被错误识别为已有的损伤类型而导致准确率下降,难以保障高铁运行的安全性和效率的技术问题。

    一种非平稳工况下轨道车辆轮对轴承故障诊断方法及设备

    公开(公告)号:CN116337447A

    公开(公告)日:2023-06-27

    申请号:CN202211640727.7

    申请日:2022-12-19

    Applicant: 苏州大学

    Abstract: 本发明涉及一种非平稳工况下轨道车辆轮对轴承故障诊断方法包括根据多种传感器采集的轨道车辆轮对轴承在不同非平稳工况下的多种信号获取样本数据;多通道融合得多传感器信息融合样本并进行自适应加权,生成目标多传感器信息融合数据,特征提取器提取目标多传感器信息融合数据在多传感器视角下的特征信息,存储至相对应的记忆库中;利用原型对比学习进行领域适配学习,获取域适应损失;利用源域数据集中提取的特征信息与半监督学习算法训练域共享类别分类器;利用域适应损失与半监督分类损失通过反向传播与梯度下降算法更新网络参数,获得目标网络;将数据集中没有类别标签的待测试样本数据输入至目标网络中,获取待测试样本数据的故障类别。

    匹配增强时频表示的旋转机械故障诊断方法

    公开(公告)号:CN111458122B

    公开(公告)日:2022-03-29

    申请号:CN202010271309.X

    申请日:2020-04-08

    Applicant: 苏州大学

    Abstract: 本发明提供了一种匹配增强时频表示的旋转机械故障诊断方法,属于变转速旋转机械故障诊断技术领域,该方法包括:引入调频率来匹配频率变化的信号的时频特征,利用正切函数约束调频率选取范围;扩展现有的线性变换基函数e‑jωt,得到能同时增强多个时频分量的时频表示;计算对应不同时频图的峭度值,利用峭度最大准则自适应选择合适的参数,选出对应最大峭度的时频分布用于最后的时频表示;对经上一步得到的时频图上利用局部峰值搜索算法搜寻旋转机械的特征时频脊线;根据检测的时频脊线诊断旋转机械故障类型。本发明通过匹配信号中频率的变化特征来增强时频表示,可以得到更加精确的时频脊线估计,并最终完成旋转机械的故障诊断。

    类不平衡数据集下的机械故障智能诊断方法

    公开(公告)号:CN113935460A

    公开(公告)日:2022-01-14

    申请号:CN202111136682.5

    申请日:2021-09-27

    Applicant: 苏州大学

    Abstract: 本发明类不平衡数据集下的机械故障智能诊断方法,包括:步骤(1)、数据预处理:把机械振动信号转换到频域,并把幅值归一化到[0,1]范围;步骤(2)、模型搭建:把自动编码器和生成对抗网络进行组合,搭建数据生成模型;步骤(3)、模型训练:利用故障数据按照预设的损失函数和优化算法训练所述数据生成模型;步骤(4)、数据生成:利用所述数据生成模型在训练中学习到的故障数据低维特征,通过多次插值、加噪后生成对应类的故障数据,实现各类数据平衡;步骤(5)、故障诊断:利用类平衡数据集训练预设的故障诊断模型,利用训练好的故障诊断模型对机械故障进行智能诊断。利用自动编码器、生成对抗网络的结合,实现机械故障诊断。

    基于对抗流模型的机械设备无监督故障诊断方法

    公开(公告)号:CN113935406A

    公开(公告)日:2022-01-14

    申请号:CN202111138262.0

    申请日:2021-09-27

    Applicant: 苏州大学

    Abstract: 本发明公开了一种基于对抗流模型的机械设备无监督故障诊断方法,包括:步骤(1)、数据预处理:把机械振动信号转换到频域,并把幅值归一化到[0,1]范围;步骤(2)、先验分布设计:根据机械设备状态的K个类别设计具有K个子分布的高斯混合模型;步骤(3)、模型搭建:把自动编码器、流模型和分类器进行组合,搭建无监督故障诊断模型;步骤(4)、模型训练:利用各类别状态数据按照设计好的先验分布、预设的训练步骤、损失函数和优化算法训练所述无监督故障诊断模型;步骤(5)、故障诊断:将机械设备的状态数据输入到训练好的所述无监督故障诊断模型中,得到数据聚类结果和故障诊断结果。机械振动信号提取能力强、聚类效果好、准确率高。

Patent Agency Ranking