-
公开(公告)号:CN118644711A
公开(公告)日:2024-09-13
申请号:CN202410688383.X
申请日:2024-05-30
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G06V10/764 , G16H30/00 , G06T7/00 , G06V10/80 , G16H50/20 , G06N3/0464 , G06N3/084 , G06N3/0895
Abstract: 本发明公开了一种适用于对肝内胆管癌分化程度进行预测的方法,通过引入了一种名为SiameseNet的双分支深度神经网络,采用多实例学习来减轻肿瘤异质性导致的性能下降。本发明所提出的方法通过交叉注意力机制整合来自两种不同模态的图像信息,最终实现高性能的预测网络,曲线下面积和受试者工作特征曲线用于评估模型性能。本发明所提出的网络在测试队列中的准确度为86.0%,曲线下面积为86.2%,敏感性为84.6%,特异性为86.7%。该模型可帮助医生及时评估患者肿瘤分化程度,制定个性化诊疗方案。
-
公开(公告)号:CN118644710A
公开(公告)日:2024-09-13
申请号:CN202410688376.X
申请日:2024-05-30
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G06V10/764 , G06T7/00 , G06T3/4038 , G06F17/11 , G06N3/0464 , G06N3/084
Abstract: 本发明公开了一种应用深度学习预测肝内胆管细胞癌分化程度的方法,引入一个将细粒度图像分类方法与课程学习方法相结合的预测肝内胆管癌分化程度的框架,名为FGCNet模型;该模型通过细粒度图像分类方法有效识别CT图像上肝内胆管癌分化程度的细微差异,通过课程学习方法加快训练速度并增强模型泛化能力。本发明提供的模型在测试数据集上的准确度为80.49%,灵敏度为81.25%,特异性为80%,曲线下面积为78.25%;该模型可以无创地评估肝内胆管癌细胞的分化程度,从而成为帮助医生制定肝内胆管癌治疗策略的潜在工具。
-
公开(公告)号:CN114972790B
公开(公告)日:2024-12-20
申请号:CN202210625461.2
申请日:2022-06-02
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G06V10/44 , G06V10/764 , G06V10/774 , G06V10/776 , G06V10/82 , G06N3/0464
Abstract: 本发明的实施例提供了一种图像分类模型训练方法、图像分类方法、电子设备及存储介质,涉及计算机视觉领域。获取已标注类型标签的多张图像样本。针对每一张图像样本,将图像样本输入至图像分类模型,在图像分类模型中的任意一层卷积层中,从图像样本中提取出多张具有不同通道的特征图像。其中,不同通道表征图像样本不同的图像特征。利用预测得到的图像样本的类型标签和特征图像的类型标签,以及该图像样本已标注的类型标签,计算得到图像分类模型的损失值,基于该损失值调整图像分类模型的参数。重复执行上述步骤,以使可以达到预期训练目标。如此,由于没有增加输入图像分类模型的图像样本的数量,使得每次模型训练耗费的时间更少。
-
公开(公告)号:CN118379208A
公开(公告)日:2024-07-23
申请号:CN202410816691.6
申请日:2024-06-24
Applicant: 电子科技大学长三角研究院(衢州)
Abstract: 本发明公开了一种基于混合损失函数扩散模型的增强CT图像生成方法及装置,该方法包括:采集CT图像数据及其配对的造影剂增强CT图像数据,并采用数据增强方法和面向数据的正则化方法对其进行预处理,以按比例划分为训练集、测试集和验证集;构建用于生成造影剂增强CT图像的扩散模型;使用训练集对扩散模型进行迭代训练,基于混合损失函数调整扩散模型的参数,以获取训练好的扩散模型;将测试集中的CT图像数据输入至训练好的扩散模型中,得到对应的造影剂增强CT图像数据。本发明能够生成清晰可靠的造影剂增强CT图像,能够更好地捕捉数据分布的特征,提高了对不同特征的感知能力,增强了合成图像的质量,提高了模型的泛化性。
-
-
-