-
公开(公告)号:CN114727229A
公开(公告)日:2022-07-08
申请号:CN202210325226.3
申请日:2022-03-30
Applicant: 电子科技大学长三角研究院(衢州)
Abstract: 本发明属于室内定位技术领域,具体是涉及一种面向异构环境的基于深度强化学习的轨迹定位方法。本发明充分利用了环境中的观测和智能体自身的历史动态信息,以智能体的位置、环境中具有设备异构性的RSS向量和过去n个时刻的历史动作为状态,用于动作的选择。再基于近场条件选择强于RSS阈值对应的APs,以构成选定的APs集合,再根据集合的大小计算最终奖赏值。依据MDP中设计的各要素对智能体的位置进行估计,并以奖赏值为学习导向基于经验重放机制和目标网络进行深度强化学习算法的迭代训练。本发明基于路径损耗模型得到具有设备异构性的仿真RSS数据,实验结果证明本发明所提方法能够实现较高的定位精度,并对处理异构RSS数据也具有一定的鲁棒性。
-
公开(公告)号:CN114979951B
公开(公告)日:2025-02-11
申请号:CN202210548984.1
申请日:2022-05-20
Applicant: 电子科技大学长三角研究院(衢州)
IPC: H04W4/021 , H04W4/02 , H04W4/33 , H04W64/00 , G06F30/27 , G06F111/06 , G06F119/02
Abstract: 本发明属于室内定位技术领域,具体涉及一种NLOS环境下针对未知干扰的三维定位方法。本发明在在NLOS环境下,根据已知测距信息建立三维约束优化定位模型,通过线性最小二乘法的定位结果建立约束并据此改进粒子群优化、鸡群优化、蚁狮优化算法的搜索范围用于求解所提定位方法。包括以下步骤:在室内设置4个固定的基站和一个待求的移动标签点,以室内一点为原点,建立空间三维坐标系;以超宽带的通信方式获取4个基站的三维坐标值以及各基站与标签节点的距离值;利用最小二乘法求出标签节点的三维坐标,保留除高度坐标外的二维坐标,利用约束优化重新计算标签节点的高度值。
-
公开(公告)号:CN113657541B
公开(公告)日:2023-10-10
申请号:CN202110987414.8
申请日:2021-08-26
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G06V10/40 , G06V10/764 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明属于目标识别技术领域,具体的说是涉及一种基于深度知识集成的领域自适应目标识别方法。本发明实现了特征级和决策级的深度知识集成。在特征级设计公有映射矩阵和特有映射矩阵实现知识集成,提升目标识别性能的鲁棒性;其中,公有映射矩阵充分挖掘了异构特征的公有知识,特有映射矩阵保留了不同特征的特有知识。在决策级设计特征权重量化不同特征的重要程度,同时利用目标域样本通过在线学习更新特征权重,克服不同领域的数据分布差异,实现领域自适应目标识别。因此本发明提出的基于深度知识集成的领域自适应目标识别方法是一种智能的领域自适应目标识别方法。
-
公开(公告)号:CN116047896A
公开(公告)日:2023-05-02
申请号:CN202211279258.0
申请日:2022-10-19
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G05B13/04
Abstract: 本发明属于室内目标跟踪技术领域,具体是涉及一种室内不确定系统的定位和跟踪方法。本发明测量噪声与多源干扰下二阶非线性系统的模型相结合。首先通过最小二乘法得到位置信息的先验预估值,用于后续状态预估器的校准。然后设计基于径向基神经网络状态预估器同时对系统受到的集总干扰和系统的全部状态进行估计,得到一个相对于先验预测值更加平滑且准确的定位结果。最后使用预估器输出的系统状态以及集总干扰的预估值设计反步法控制律,驱动系统进行预设轨迹的跟踪。仿真结果表明所提出方法能够在测量噪声与多源干扰下获得准确且连续的定位、跟踪结果。
-
-
-