-
公开(公告)号:CN118134673A
公开(公告)日:2024-06-04
申请号:CN202410552053.8
申请日:2024-05-07
IPC: G06Q50/00 , G06F16/2457 , G06F16/29 , G06N3/126 , G06N7/01
Abstract: 本发明公开了一种城市空间的竞争合作强度计算方法,包括获取城市空间数据信息并预处理和构建目标城市空间交互图;得到目标城市中各个街区隶属于各个社团的隶属度数据,计算目标城市重叠社团数据;计算得到各个重叠社团的特征向量;对各个社团之间的交互流量进行建模;采用遗传算法进行重复迭代计算,得到最优的各个社团与各个街区的竞争合作强度数据,完成目标城市空间的竞争合作强度计算。本发明还公开了一种实现所述城市空间的竞争合作强度计算方法的系统。本发明基于城市空间数据信息推演城市空间的竞争合作强度数据,解决了多因素影响下难以进行整体性分析的难点,不仅能够完成城市空间的竞争合作强度的计算分析,而且可靠性高、精确性好。
-
公开(公告)号:CN113486135B
公开(公告)日:2024-04-12
申请号:CN202110852651.3
申请日:2021-07-27
Applicant: 中南大学
IPC: G06F16/29 , G06F16/26 , G06Q10/0639 , G06T7/10 , G06N3/084 , G06N3/0464
Abstract: 本发明提供了一种基于深度学习网络的建筑物综合方法,包括:获取城市路网,根据城市路网将大比例尺地图和小比例尺地图上的建筑物要素划分至街区;将所有街区的矢量数据栅格化为栅格矩阵形式,并处理为训练样本的形式;根据所述训练样本的形式构建深度学习语义分割模型,并对所述深度学习语义分割模型进行训练,设定参数;利用训练完成的模型进行建筑物综合,并用交并比评价得到建筑物综合结果。本发明在没有人工干预的情况下实现对地图上建筑物要素的综合。
-
公开(公告)号:CN112052783B
公开(公告)日:2024-04-09
申请号:CN202010909322.3
申请日:2020-09-02
Applicant: 中南大学
IPC: G06V20/10 , G06V10/774 , G06V10/82 , G06V10/26 , G06N3/0464 , G06T3/4007 , G06T7/194
Abstract: 本发明提供了一种结合像素语义关联和边界注意的高分影像弱监督建筑物提取方法,包括训练数据准备、深层特征提取、边界特征融合、像素语义关联度学习、损失函数计算和生成建筑物伪标注;通过设计边界注意模块,将超像素先验信息和网络提取的边界信息相结合,强化了建筑物边界特征,且通过学习像素之间的语义关联性,将像素间的语义信息在图像中进行有效传播,生成更为完整密集,边界更为清晰的伪标签。同时配合高分遥感影像采用全卷积网络模型训练,实现建筑物特征自动提取。
-
公开(公告)号:CN117271959B
公开(公告)日:2024-02-20
申请号:CN202311550749.9
申请日:2023-11-21
Applicant: 中南大学
IPC: G06F18/21 , G06N7/01 , G06N3/042 , G06N3/0464 , G06N3/084 , G06N3/044 , G06N3/0455 , G06F17/16
Abstract: 本申请适用于空气检测技术领域,提供了一种PM2.5浓度预测结果的不确定性评估方法及设备,该PM2.5浓度预测结果的不确定性评估方法包括:将目标区域划分为多个网格区域,并构建无向图;根据每个网格区域的路网状态、兴趣点分布状态、气象属性、轨迹属性和PM2.5浓度,获取目标区域的属性矩阵;基于无向图和属性矩阵,获取最终潜在特征矩阵;对最终潜在特征矩阵进行计算得到所有网格区域的最优PM2.5浓度预测结果;基于最终潜在特征矩阵,获取网格区域的最优PM2.5浓度预测结果的不确定值。本申请的PM2.5浓度预测结果的不确定性评估方法能够解决PM2.5浓度预测结果的可靠性与稳健性存疑的问题。
-
公开(公告)号:CN117274797A
公开(公告)日:2023-12-22
申请号:CN202311140074.0
申请日:2023-09-06
Applicant: 中南大学
IPC: G06V20/10 , G06N3/0464 , G06N3/08 , G06V10/40 , G06V10/764 , G06V10/774 , G06V10/80 , G06V10/82
Abstract: 本发明公开了一种基于视觉和语义信息的城市土地利用功能识别方法,包括获取设定区域的遥感图像数据和建筑物相关数据并得到训练数据集;构建区域视觉表征网络;构建区域语义表征网络;构建分类层并结合区域视觉表征网络和区域语义表征网络,构建城市土地利用功能识别原始模型;采用训练数据集训练城市土地利用功能识别原始模型得到城市土地利用功能识别模型;采用城市土地利用功能识别模型完成目标区域内的城市土地利用功能的识别。本发明还公开了一种实现所述基于视觉和语义信息的城市土地利用功能识别方法的系统。本发明不仅能够对城市土地利用功能进行识别,而且可靠性更高,准确性更好。
-
公开(公告)号:CN116628462B
公开(公告)日:2023-10-31
申请号:CN202310882506.9
申请日:2023-07-19
Applicant: 中南大学
Abstract: 本发明实施例中提供了一种城市三维空间用地功能属性识别与时空变化监测分析方法,属于数据处理技术领域,具体包括:对目标区域的POI数据的地址信息进行正则计算,得到楼层信息;POI数据和楼层信息进行校正;对校正后的楼层信息根据楼层数划分统计类别;计算三维功能强度频率指数和类型比例;计算功能属性类型,得到目标区域的用地功能属性识别结果;利用目标区域不同年份的POI数据得到多个三维用地功能属性识别结果,根据楼层的功能属性识别结果进行差异计算,得到目标区域的功能属性时空变化结果。通过本发明的方案,提高了识别城市建筑物三维空间用地功能属性及其时空变化监测的效率、适应性和精准度。
-
公开(公告)号:CN116756344A
公开(公告)日:2023-09-15
申请号:CN202311031285.0
申请日:2023-08-16
Applicant: 中南大学
IPC: G06F16/36 , G06F40/30 , G06Q10/0637 , G06F16/332 , G06F16/35 , G08B21/10 , G08B31/00
Abstract: 本申请适用于地质灾害辅助决策技术领域,提供了一种面向全过程的滑坡场景本体构建方法及相关设备,该方法通过确定构建滑坡场景本体的领域范围;根据领域范围,对滑坡场景本体进行分类;分别构建各滑坡场景本体类对应的概念层、对象层、状态层以及特征层;定义各滑坡场景本体类对应的概念层、对象层、状态层以及特征层之间的关联关系;根据关联关系,进行滑坡场景本体建模,得到滑坡场景本体。本申请能够提高滑坡场景本体构建的准确性和全面性。
-
公开(公告)号:CN113312438B
公开(公告)日:2023-09-15
申请号:CN202110258321.1
申请日:2021-03-09
Applicant: 中南大学
IPC: G06F16/29 , G06F18/2321 , G06F18/25 , G06Q10/04 , G06Q50/30
Abstract: 本发明提供了一种融合航线提取与趋势判断的海上目标位置预测方法,包括:步骤1,对AIS轨迹数据进行数据预处理,将AIS轨迹数据中的轨迹按航程进行分段并剔除异常轨迹;步骤2,分别选取预处理后的AIS轨迹数据中各个轨迹的起点和终点,采用DBSCAN聚类算法对选取的各个轨迹的起点进行聚类,得到起点聚类结果,采用DBSCAN聚类算法对选取的各个轨迹的终点进行聚类,得到终点聚类结果。本发明所述的融合航线提取与趋势判断的海上目标位置预测方法,适应性强、预测精准度高,不易受到噪声的影响解决了海上目标深层次移动规律的提取与可解释性问题,实现了海上目标高效、高精度的预测需求。
-
公开(公告)号:CN116628462A
公开(公告)日:2023-08-22
申请号:CN202310882506.9
申请日:2023-07-19
Applicant: 中南大学
Abstract: 本发明实施例中提供了一种城市三维空间用地功能属性识别与时空变化监测分析方法,属于数据处理技术领域,具体包括:对目标区域的POI数据的地址信息进行正则计算,得到楼层信息;POI数据和楼层信息进行校正;对校正后的楼层信息根据楼层数划分统计类别;计算三维功能强度频率指数和类型比例;计算功能属性类型,得到目标区域的用地功能属性识别结果;利用目标区域不同年份的POI数据得到多个三维用地功能属性识别结果,根据楼层的功能属性识别结果进行差异计算,得到目标区域的功能属性时空变化结果。通过本发明的方案,提高了识别城市建筑物三维空间用地功能属性及其时空变化监测的效率、适应性和精准度。
-
公开(公告)号:CN116110210B
公开(公告)日:2023-08-01
申请号:CN202310351984.7
申请日:2023-04-04
Applicant: 中南大学
IPC: G08B31/00 , G08B21/10 , G06F18/2431
Abstract: 本发明实施例中提供了一种复杂环境下数据驱动的滑坡灾害辅助决策方法,属于计算技术领域,具体包括:步骤1,收集目标区域内包含孕灾因子的第一数据源;步骤2,收集目标区域内包含诱灾因子的第二数据源;步骤3,将第一数据源和第二数据源进行预处理;步骤4,根据预处理后的第一数据源和第二数据源制作正负样本集,进行数据迭代增强,基于逻辑回归模型构建易发性模型,以及,基于随机森林模型构建诱发性模型;步骤5,根据易发性模型和诱发性模型,以承灾范围为约束对目标区域的滑坡危险性进行动态预警,并进行分级展示,得到目标区域内动态预警信息并生成辅助决策参考信息。通过本发明的方案,提高了精准度和实时性。
-
-
-
-
-
-
-
-
-