轴孔装配位姿精度的检测方法、装置、设备及存储介质

    公开(公告)号:CN114782315A

    公开(公告)日:2022-07-22

    申请号:CN202210266335.2

    申请日:2022-03-17

    Applicant: 清华大学

    Abstract: 本申请公开了一种轴孔装配位姿精度的检测方法、装置、电子设备及存储介质,其中,方法包括:首先,对孔与轴进行空间三维外形检测及轴心拟合;之后,在装配前,将孔与轴表面预先涂覆光固化树脂。执行装配后,通过紫外光线照射,使树脂固化,保证孔与轴固定连接。并参照孔与轴空间三维外形检测结果,选取特定截面作为剖切面,将装配后的轴孔沿所选剖切面铣削出一个截面;对剖面内的孔与轴进行平面二维外形检测;剖面内平面二维外形与空间三维外形数据对准,最后,将剖面内孔与轴轴线恢复,并进行装配精度的检测。从而,准确检测紧密配合的配合面型数据。由此,解决了轴孔装配精度检测等问题。

    基于力位状态映射模型的机器人过盈轴孔装配方法和装置

    公开(公告)号:CN112757344B

    公开(公告)日:2022-03-11

    申请号:CN202110075320.3

    申请日:2021-01-20

    Applicant: 清华大学

    Abstract: 本申请提出一种基于力位状态映射模型的机器人过盈轴孔装配方法和装置,涉及机器人自动化装配技术领域,其中,方法包括:构建过盈轴孔的机器人装配系统;建立轴孔相对位姿与交互作用力的状态映射模型;通过机器人装配系统中的力传感器信号获取当前交互作用力;根据状态映射模型和当前交互作用力获取轴孔相对位姿的当前状态,并根据当前状态确定系统控制器的控制方向,根据控制方向和系统控制器的控制参数,进行过盈轴孔装配。由此,通过建立轴孔过盈装配的相对位姿与交互作用力的状态映射模型,使用机器人力控技术,以广义导纳控制的形式,实现过盈轴孔的装配。

    非接触式距离传感器阵列测量工件曲率的方法及系统

    公开(公告)号:CN112525131B

    公开(公告)日:2021-09-14

    申请号:CN202011144789.X

    申请日:2020-10-23

    Applicant: 清华大学

    Abstract: 本申请公开了一种非接触式距离传感器阵列测量工件曲率的方法及系统,其中,方法包括:利用非对称六边形布局的距离传感器阵列检测未知曲面上六点测量点于标定平面的垂直距离,给出测量点空间位置;使用预设的曲面参数反解算法,完成曲面参数的反解;使用迭代方法将反解结果加入迭代环节,以优化曲面参数的反解精度。本申请实施例的非接触式距离传感器阵列测量工件曲率的方法,通过安装在自动化加工机构末端的距离传感器阵列非接触式地测量工件曲率特征,可以提升现有自动化加工设备,尤其是自动钻削、锪孔加工设备在自由曲面工件上的锪孔深度精度,并进一步改良加工效果。

    接触式局部曲率特征的测量方法及系统

    公开(公告)号:CN112525130A

    公开(公告)日:2021-03-19

    申请号:CN202011144783.2

    申请日:2020-10-23

    Applicant: 清华大学

    Abstract: 本申请公开了一种接触式局部曲率特征的测量方法及系统,其中,方法包括:利用接触式压紧环面与工件特定待加工位置接触;利用距离传感器阵列获取当前工件环面周围的几个待测点的距离信息,并根据距离信息计算当前曲面的朝向特征,其中,朝向特征包含待测量点位局部法向矢量方向;使用法向矢量、传感器分布特征和测量示值计算当前压紧环面对应工件曲面的曲率特征,其中,曲率特征包含主曲率半径、主曲率朝向、平均曲率、高斯曲率,以利用二次曲面拟合局部曲面。本申请实施例的接触式局部曲率特征的测量方法,通过末端机构上的距离传感器阵列测量工件曲率特征,可以提升现有自动化加工设备在工件刚性较弱、形貌未知等复杂工况下加工的精度和效率。

    基于多激光跟踪仪测量场的对合调姿方法

    公开(公告)号:CN109613519B

    公开(公告)日:2020-11-13

    申请号:CN201910027885.7

    申请日:2019-01-11

    Applicant: 清华大学

    Abstract: 本发明提供了一种基于多激光跟踪仪测量场的对合调姿方法,其包括步骤:S1,建立理想装配体模型;S2,构建出多激光跟踪仪测量场;S3,采用光束平差法进行迭代计算,求出任意两台激光跟踪仪之间的齐次转换矩阵;S4,计算出各测量辅助点在全局坐标系下的坐标;S5,将目标工件工装装配于基准工件工装。测量辅助点的位置选择约束较少,更为灵活,避免了测量辅助点之间的相对位置发生漂移,提高了测量精度。转站计算采用基于全局优化思想的光束平差法,其可一次性完成多台激光跟踪仪之间的转站计算,提高了转站精度。同时采用激光跟踪仪的实测数据进行指导调姿,减小了目标测量点放置误差对目标测量点位置估计结果的影响,提高了测量精度。

    仿人机器人的结构与运动的协同优化方法

    公开(公告)号:CN108333971B

    公开(公告)日:2020-06-12

    申请号:CN201810166606.0

    申请日:2018-02-28

    Applicant: 清华大学

    Abstract: 本发明提供了一种仿人机器人的结构与运动的协同优化方法,其包括步骤:S1,提供待优化的仿人机器人的已知结构信息;S2,生成待优化的仿人机器人模型;S3,选定包含仿人机器人的腿部结构参数和步行运动参数的多组组合参数;S4,分别生成选定的各组组合参数下的机器人模型和对应的模型文件;S5,分别进行仿真实验并对仿真实验的结果进行评分;以及S6,采用代理模型优化器建立数学代理模型并采用EGO算法对数学代理模型进行优化计算并获得最佳的组合参数。由此,有效提升了仿人机器人的步行运动能力,还避免了机器人的腿部结构参数与步行运动参数之间复杂的动力学方程式的推导,简化了操作、实用性更强并降低了理论与实际之间的偏差。

    自适应加工机构位姿误差的补偿方法及系统

    公开(公告)号:CN110825029A

    公开(公告)日:2020-02-21

    申请号:CN201911031431.3

    申请日:2019-10-28

    Applicant: 清华大学

    Abstract: 本发明公开了一种自适应加工机构位姿误差的补偿方法及系统,其中,该方法包括以下步骤:利用距离传感器阵列获取当前工件在测量坐标系下的法矢向量;获取当前工件的理论法矢向量,并根据法矢向量和理论法矢向量分别计算法矢向量的待加工位置和理论法矢向量的理论加工位置;计算待加工位置和理论加工位置的加工误差,利用线性关系处理加工误差,得到每个进给主轴的补偿量。该方法通过加工机构上的距离传感器阵列检测并预测偏移量,依据预测值,使用机床的进给轴进行平动补偿,进而消除加工误差的主体部分,获取更高的加工精度。

    基于增强现实技术的配钉方法

    公开(公告)号:CN110076277B

    公开(公告)日:2020-02-07

    申请号:CN201910375563.1

    申请日:2019-05-07

    Applicant: 清华大学

    Abstract: 本发明提供了一种基于增强现实技术的配钉方法,搭建应用增强现实技术的配钉系统,在待装配工件的装配区域中布置公共测量点和定位标志点,它们作为激光跟踪仪和配钉系统的增强现实投射单元采集的信息源,结合视觉SLAM算法构建全局地图,保证基于增强现实技术辅助配钉作业在大尺度空间下的精度。结合激光跟踪仪与相机,消除相机定位过程中大尺度空间需求和局部定位精度需求之间的矛盾,确保增强现实图像显示器上投射的虚拟图像精度。在装配时,增强现实投射单元将真实环境中的现实图像和实时的虚拟图像叠加,虚拟图像上的各虚拟孔位处标识有对应的紧固件类型,各虚拟孔位与现实图像上的实际孔位位置对应,从而能实时指导装配、装配精度较高。

    工件三维热膨胀变形的跟踪仪转站参数优化方法及装置

    公开(公告)号:CN110728088A

    公开(公告)日:2020-01-24

    申请号:CN201910922978.6

    申请日:2019-09-27

    Applicant: 清华大学

    Abstract: 本发明公开了一种工件三维热膨胀变形的跟踪仪转站参数优化方法及装置,其中,该方法根据待测工件的三维数模,通过ANSYS有限元热分析计算工件热膨胀变形的中心点;建立考虑工件三维热膨胀变形的转站目标优化函数;根据工件增强系统参考点的理论值以及通过激光跟踪仪实际测量的工件增强系统参考点的位置结果,采用奇异值分解方法获得转站参数初始值;根据转站参数初始值,随机生成多个转站参数建立优化算法的粒子种群,并计算粒子群个体的适应值;采用粒子群优化算法对种群个体进行迭代优化,直到计算得到最优的跟踪仪转站参数。该方法充分考虑了大型工件在温度变化引起的工件三维热变形因素,提高了跟踪仪转站测量的精度。

    自动制孔系统的孔位校正方法

    公开(公告)号:CN109318050B

    公开(公告)日:2019-11-08

    申请号:CN201811442360.1

    申请日:2018-11-29

    Applicant: 清华大学

    Abstract: 本发明提供了一种自动制孔系统的孔位校正方法,其包括步骤:建立待制孔工件的三维模型;标出基准孔和待制孔的理论位置;加工并测出基准孔的实际位置;计算出基准孔的孔位偏差;基于Kriging模型,由基准孔的理论位置及孔位偏差的三个分量,获得孔位偏差的响应函数Δu(x)、Δv(x)、Δw(x)及均方误差函数su2(x)、sv2(x)、sw2(x);由待制孔的理论位置和三个响应函数,分别计算出待制孔的孔位偏差的三个分量;由待制孔的理论位置和三个均方误差函数,分别计算出对应的均方误差;求出待制孔的实际位置。通过这种方法计算出的任意一个待制孔的孔位偏差的均方误差不仅取决于两端的基准孔的孔位偏差,还取决于与其临近的若干个孔的孔位偏差,由此提高了待制孔的孔位偏差的计算精度。

Patent Agency Ranking