姿势检测和识别
    15.
    发明授权

    公开(公告)号:CN102693007B

    公开(公告)日:2016-12-07

    申请号:CN201210052880.8

    申请日:2012-03-02

    CPC classification number: G06F3/017 G06K9/00342

    Abstract: 本发明涉及姿势检测和识别。描述了一种姿势检测和识别技术。在一个示例中,接收与执行姿势的用户的运动有关的数据项的序列。对照预先学习的门限值测试从该序列中选出的数据项集合,以确定该序列表示某个姿势的概率。如果该概率大于预定值,则检测到该姿势,并执行动作。在示例中,这些测试是由经训练的决策树分类器执行的。在另一示例中,可将数据项的序列与预先学习的模板进行比较,并确定它们之间的相似度。如果模板的相似度超过门限,则更新与该模板相关联的姿势的未来时间相关联的可能性值。然后,当达到该未来时间时,如果该可能性值大于预定义值,则检测到该姿势。

    使用有向无环图的存储器促进

    公开(公告)号:CN105765609A

    公开(公告)日:2016-07-13

    申请号:CN201480062360.2

    申请日:2014-11-12

    Abstract: 描述了使用有向无环图的存储器促进,例如,其中多个有向无环图被训练以用于从人类骨架数据中进行姿势识别,或者用于从深度图像中估计人体关节位置以用于姿势检测。在各个示例中,有向无环图在使用训练目标的训练期间增长,该训练目标将节点之间的连接模式与分割函数参数值两者考虑在内。例如,子节点层使用初始化策略增长并且与父节点层连接。在各示例中,各个局部搜索过程被用于寻找连接模式与分割函数参数的良好组合。

Patent Agency Ranking