-
公开(公告)号:CN102411065A
公开(公告)日:2012-04-11
申请号:CN201110410557.9
申请日:2011-12-09
Applicant: 安徽大学
IPC: G01P15/03
Abstract: 本发明公开了一种激光自混合型加速度传感器,其特征是具有:一圆柱壳,在其内部形成一封闭腔,圆柱壳与被测物体固定连接;一弹性膜片,位于圆柱壳封闭腔的横断面上;在弹性膜片的中央固定设置一敏感质量块;一半导体激光器,是以刚性支架固定设置在圆柱壳封闭腔内,与敏感质量块处在同轴位置上;半导体激光器用于向敏感质量块发出光信号,并接收来自敏感质量块的反馈光信号;以光电探测器作为光电信号转换单元;以信号处理单元接收光电探测器的输出信号,并输出加速度检测信号。本发明利用半导体激光自混合效应感测加速度信号,避免了电磁干扰,能够高灵敏度、大动态范围测量待测物体加速度。
-
公开(公告)号:CN1801549A
公开(公告)日:2006-07-12
申请号:CN200510095693.8
申请日:2005-11-23
Applicant: 安徽大学
IPC: H01S3/067 , H01S3/0941 , H01S3/08 , H01S3/10 , H01S3/00
Abstract: 调频窄线宽保偏光纤激光器,由各光纤器件构成具有光环行回路的环形谐振腔,其特征是各光纤器件均采用保偏光纤器件,并且在环形谐振腔中设置用于频率调制的保偏光纤波导调制器。本发明通过在光纤环形激光腔中置入保偏光纤波导调制器,实现了对输出激光的频率调制;通过在腔中使用全保偏光纤器件,实现了稳定的线偏振激光输出;利用环形腔结构和在未泵浦保偏掺铒光纤中驻波饱和吸收诱发的自写入光纤光栅的窄带滤波特性及反射波长自适应性实现了单频窄线宽输出。
-
公开(公告)号:CN115756045A
公开(公告)日:2023-03-07
申请号:CN202211599785.X
申请日:2022-12-12
Applicant: 安徽大学
IPC: G05D27/02
Abstract: 本发明涉及冷链运输技术领域,更具体的,涉及基于信息融合补偿的冷链储运环境温湿度控制方法、装置。本发明对采集的温湿度数据使用卡尔曼滤波进行噪声消除,使数据更加准确;通过多传感器信息融合,将车门状态数据与温湿度传感器数据融合,使在突然开门这种环境突变发生时,动态地对卡尔曼增益系数进行补偿,可在不影响正常滤波的前提下,减小滤波后数据的滞后性,提高整个温控系统的实时性与可靠性。
-
公开(公告)号:CN109932050A
公开(公告)日:2019-06-25
申请号:CN201910233041.8
申请日:2016-04-20
Applicant: 安徽大学
Abstract: 本分案申请涉及激光自混合传感技术领域,现有的激光自混合振动、位移、速度传感系统难以实现高精度、高探测灵敏度的传感测量且结构难以做到真正意义的微型化,无法与现代通讯系统的芯片做到很好的集成,无法大规模集成开发和应用。针对上述问题,本分案申请提供一种微腔芯片型激光自混合振动、位移、速度传感系统,该系统基于激光自混合干涉测量原理,利用光学微腔构建激光自混合传感系统,实现了高精度,高灵敏度的传感测量,同时因系统具有微型化的优点,更加适合于大规模芯片制造加工,更加适合于狭小场合、复杂环境下的现场测量,并且能够与目前光纤通讯中的商用系统充分结合,低成本,高效地实现远程及特殊应用场合传感及数据处理。
-
公开(公告)号:CN105424605B
公开(公告)日:2018-05-01
申请号:CN201510800199.0
申请日:2015-11-18
Applicant: 安徽大学
Abstract: 本发明涉及白光干涉测量和气体光声光谱测量技术领域,具体为一种基于低相干光纤微分干涉非接触测振的光声光谱测量装置及方法,该装置包括:ASE光源、第一环形器、第二环形器、第一耦合器、第二耦合器、第三耦合器、延迟光纤、第一光纤接头、第二光纤接头、陶瓷套管、高灵敏度压力敏感膜片、具有PZT调制器的光纤光栅、第一光电探测器、第二光电探测器、第三光电探测器、数据采集单元和计算机,本发明采用低相干光源,探测光光路为马赫曾德和赛格纳克混合干涉仪结构,利用三个探测器对返回光进行三路探测解调,具有对低频扰动不敏感,测量动态范围大,可实现光纤白光干涉的远距离非接触绝对幅值测量,光压振动干扰小、不易受电磁干扰等优点。
-
公开(公告)号:CN105675258B
公开(公告)日:2018-01-09
申请号:CN201610008795.X
申请日:2016-01-04
Applicant: 安徽大学
IPC: G01M11/00
Abstract: 本发明涉及高双折射光纤参数测量领域,具体为一种基于干涉级数的高双折射光纤拍长测量方法及测量装置。现有的拍长测量方法,计算结果依赖的测量参量均较多,导致计算结果误差较大。为解决上述问题,本发明提供一种基于干涉级数的高双折射光纤拍长测量方法及测量装置。测量方法步骤如下:A.测量待测高双折射光纤的长度L;B.搭建以高双折射光纤快轴和慢轴构成干涉光路相位差的干涉仪;C.获得干涉光谱,采集相邻两个极值的波长,计算出极值波长所对应的干涉级数N;D.根据拍长计算公式计算出不同极值波长下的拍长。本发明所述的测量方法,依赖参量少,测量误差小,测量精度高。本发明提供的测量装置,结构简单,易于实现。
-
公开(公告)号:CN104764926B
公开(公告)日:2017-09-29
申请号:CN201510219815.3
申请日:2015-04-30
Applicant: 安徽大学
IPC: G01R19/00
Abstract: 本发明公开了一种基于套嵌光纤光栅的光纤电流传感器及其电流检测方法,其特征在于,是以光纤上剥离了光纤涂覆层的区域作为光栅写入区域,在其纤芯上写入有由长周期光栅和布拉格光栅套嵌形成的复合光栅结构;在其外表面蒸镀有发热电极,发热电极的两端分别由一根无氧铜丝引出,用于与外部待测电路相连;所采用的电流检测方法为:当外部待测电路有电流输出经过发热电极时,引起光纤电流传感器反射谱或透射谱的峰值波长漂移,检测出峰值波长的漂移大小,则可获得外部电流的大小,实现对电流的检测。本发明的基于套嵌光纤光栅的光纤电流传感器具有灵敏度高,响应速度快,体积小,结构简单,性能稳定,成本低以及光路应用灵活的优点。
-
公开(公告)号:CN105486425A
公开(公告)日:2016-04-13
申请号:CN201610023488.9
申请日:2016-01-12
Applicant: 安徽大学
IPC: G01K11/32
CPC classification number: G01K11/32
Abstract: 本发明涉及光纤温度传感技术领域,具体为一种大量程的温度绝对值测量方法及测量装置。现有的光纤干涉型温度传感器,无法测量温度的绝对值,测温范围窄。针对上述问题,本发明公开一种大量程的温度绝对值测量方法,利用高双折射光纤的双折射和长度与外界温度的关系,建立关系式其中T表示外界温度,a、b表示待定系数,表示某参考波长λ0经过高双折射光纤快轴和慢轴时所产生的相位差且B表示高双折射光纤的双折射,L表示高双折射光纤的长度,λN表示任一极值波长,N表示任一极值波长λN所对应的干涉级数,制作装置时或者首次测量前,获取不同温度下的干涉光谱,对a、b进行标定,实际测量时,获取任意波长范围内的干涉光谱,利用公式即可计算出待测温度的绝对值。
-
公开(公告)号:CN104215319A
公开(公告)日:2014-12-17
申请号:CN201410440329.X
申请日:2014-09-01
Applicant: 安徽大学
IPC: G01H9/00
Abstract: 本发明公开了一种可调节动态范围的微分干涉仪,包括ASE光源1、光纤环形器2、第一光纤耦合器3、第一延迟光纤4、第二延迟光纤5、光开关6、三个光电探测器、第二光纤耦合器8、法拉第旋转镜10;所述三个光电探测器分别与第一光纤耦合器3连接,所述光纤环形器2串接在第二光电探测器7.2与第一光纤耦合器3连接的通路上,所述光纤环形器2还与ASE光源1连接,所述第一光纤耦合器3还分别与第一延迟光纤4、第二延迟光纤5、第二光纤耦合器8连接,三个光电探测器分别与光开关6连接,所述光开关6还与第二光纤耦合器8连接,所述第二光纤耦合器8与法拉第旋转镜10相连,所述第一延迟光纤4、第二延迟光纤5长度不同。
-
公开(公告)号:CN103439268A
公开(公告)日:2013-12-11
申请号:CN201310398870.4
申请日:2013-09-05
Applicant: 安徽大学
Abstract: 本发明涉及一种基于自混合的高灵敏度膜片式光声光谱传感器,包括传感光源、激发光源、第一耦合器、光声腔体及信号处理电路单元,传感光源、激发光源出射激光经第一耦合器由光纤导入光声腔体内;光声腔体包括陶瓷套管及高灵敏度膜片;激发光源出射激光激发气体分子产生光声信号,并引起高灵敏度膜片振动;传感光源作为检测光信号入射到高灵敏度膜片表面,被反射回光纤端面,经光纤输出至传感光源的腔内产生自混合光声光谱信号;自混合光声光谱信号经信号处理电路单元处理,获得高灵敏度膜片振动频率和幅度,进而获得气体的浓度、压力信息。本发明采用自混合干涉传感技术,光路结构更加简单可靠,可实现远距离,分布式气体检测。
-
-
-
-
-
-
-
-
-