-
公开(公告)号:CN113052270B
公开(公告)日:2024-12-24
申请号:CN202110503779.9
申请日:2021-05-10
Applicant: 清华大学 , 国家计算机网络与信息安全管理中心
IPC: G06F18/21 , G06F18/241 , G06F18/22
Abstract: 本申请涉及一种分类精度评价方法、装置、计算机设备和存储介质。所述方法包括:获取有害语音样本集;将有害语音样本集中的每个有害语音样本输入待评价的有害语音分类模型中进行分类,得到预测类别标签;在预设的分类层级中,确定与预测类别标签和有害语音样本的样本类别标签对应的目标分类;根据目标分类计算待评价的有害语音分类模型的分类精确程度。本方案中,对有害语音样本进行了多层次的分类(即分类层级),然后在分类层级中确定预测类别标签和样本类别标签共同所属的目标分类,目标分类可以反映预测类别标签和样本类别标签的匹配度,进而根据目标分类确定分类模型的分类精确程度,能够有效的提高分类模型评价的准确度。
-
公开(公告)号:CN108460772B
公开(公告)日:2022-05-17
申请号:CN201810150076.0
申请日:2018-02-13
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06T7/11 , G06T7/136 , G06T7/155 , G06V10/764 , G06K9/62
Abstract: 本发明提供了一种基于卷积神经网络的广告骚扰传真图像检测系统及方法,包括关键字区域提取模块,所述关键字区域提取模块用于确定待检测传真图像的关键字可疑区域;神经网络置信度分析模块,所述神经网络置信度分析模块与所述关键字区域提取模块相连,所述神经网络置信度分析模块用于对所述关键字可疑区域的文字进行识别,实现传真图像的分类。本发明通过关键字区域提取模块对关键字可疑区域进行提取,自动化运行,工作效率高;通过神经网络置信度分析模块对关键字可疑区域的文字进行识别,实现广告骚扰传真的分类判断,节约时间,管控能力强,使得本发明具有工作效率高,管控能力强的特点。
-
公开(公告)号:CN113205801A
公开(公告)日:2021-08-03
申请号:CN202110498059.8
申请日:2021-05-08
Applicant: 国家计算机网络与信息安全管理中心 , 清华大学
Abstract: 本申请涉及一种恶意语音样本的确定方法、装置、计算机设备和存储介质。该方法包括:获取初始语音样本集;根据预设的多种恶意类别对初始语音样本集进行分类,得到多种恶意类别中每种恶意类别对应的语音样本子集;根据每种恶意类别对应的语音样本子集中的语音样本信息,计算每种恶意类别对应的语音样本子集的恶意度;将恶意度满足预设恶意度条件的恶意类别对应的语音样本子集中的语音样本,确定为恶意语音样本。本方法基于语音样本子集的恶意类别以及恶意度可自动确定恶意语音样本,有利于提高恶意语音样本的确定效率。
-
公开(公告)号:CN108460772A
公开(公告)日:2018-08-28
申请号:CN201810150076.0
申请日:2018-02-13
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明提供了一种基于卷积神经网络的广告骚扰传真图像检测系统及方法,包括关键字区域提取模块,所述关键字区域提取模块用于确定待检测传真图像的关键字可疑区域;神经网络置信度分析模块,所述神经网络置信度分析模块与所述关键字区域提取模块相连,所述神经网络置信度分析模块用于对所述关键字可疑区域的文字进行识别,实现传真图像的分类。本发明通过关键字区域提取模块对关键字可疑区域进行提取,自动化运行,工作效率高;通过神经网络置信度分析模块对关键字可疑区域的文字进行识别,实现广告骚扰传真的分类判断,节约时间,管控能力强,使得本发明具有工作效率高,管控能力强的特点。
-
公开(公告)号:CN105187403B
公开(公告)日:2018-06-12
申请号:CN201510498610.3
申请日:2015-08-13
Applicant: 国家计算机网络与信息安全管理中心
IPC: H04L29/06
Abstract: 本发明提出一种面向软件定义网络的网络安全性测试方法,包括针对目标软件定义网络的安全性测试框架、安全性测试策略、分类安全性测试方法、项目安全性测试方法和安全性测试步骤。其中,测试框架包括将目标软件定义网络划分为数据、控制、应用和管理四个网络平面,分别对各个网络平面的各个网元、链路以及各个网络平面之间的接口展开安全性测试;测试策略包括对安全性测试框架中的各个单元进行测试的选择和流程编制方法;分类安全性测试方法依据各个单元的类别特点开展不同类型的安全性测试;项目安全性测试方法实现具体的针对目标网元、链路或接口的安全性测试,测试流程定义了完整的针对目标软件定义网络的安全性测试过程和步骤。
-
公开(公告)号:CN107194310A
公开(公告)日:2017-09-22
申请号:CN201710213110.X
申请日:2017-04-01
Applicant: 国家计算机网络与信息安全管理中心
CPC classification number: G06K9/00718 , G06K9/6202 , G06K9/6268
Abstract: 本发明涉及一种基于场景变化分类和在线局部特征匹配的刚体目标跟踪方法,其步骤包括:在初始图像中选定感兴趣的目标区域,在目标区域检测SURF特征;对每个SURF特征建立场景描述向量,通过随机的场景变化实现离线学习,得到每个SURF特征最能够适应的场景分类信息;为每个SURF特征创建分类器;在当前图像到来时,判断当前图像的场景分类,从初始图像中选取最能够适应当前场景的SURF特征,并将其与当前图像检测到的SURF特征进行基于分类器的匹配,形成匹配点对;根据得到的匹配点对计算得出运动参数,从而确定当前图像的目标区域,实现目标跟踪。本发明使跟踪能够保持对视频中感兴趣区域出现连续复杂变化的自适应性。
-
公开(公告)号:CN119311871A
公开(公告)日:2025-01-14
申请号:CN202411222450.5
申请日:2024-09-02
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/35 , G06F16/36 , G06F18/25 , G06F18/213 , G06N3/045
Abstract: 本申请涉及舆情监测技术领域,公开一种面向噪声文本信息的检测方法及系统,所述方法包括:获取目标数据集;对目标数据集进行预处理,获取预处理后的文本特征;构成汉化文本分类模型预训练模型,其中,汉化文本分类模型预训练模型用于预处理后的文本特征,以获取文本的表示向量;构建两个结构不同的基于汉化文本分类预训练模型作为双塔模型的基分类器A和基分类器B;用相同数据集对基分类器A和基分类器B进行调整。本发明能够对双塔模型进行相互校验,对双塔模型的输出结果进行综合考量,并输出最终结果,从而有效提高整体的特定内容检测准确率。
-
公开(公告)号:CN115914046B
公开(公告)日:2024-12-13
申请号:CN202110914690.1
申请日:2021-08-10
Applicant: 国家计算机网络与信息安全管理中心
IPC: H04L43/10 , H04L43/50 , H04L65/102 , H04L65/1104 , H04L67/02
Abstract: 本申请提供一种VoIP网关识别方法、装置、设备和存储介质,该方法包括:接收识别指令,所述识别指令中携带有目标主机的IP地址;根据所述目标主机的IP地址,对所述目标主机发送探测报文,接收所述目标主机针对所述探测报文返回的探测应答消息;根据所述探测应答消息,确定所述目标主机是否属于VoIP网关。本申请通过主动探测目标主机的分析方式,来识别目标主机是否为VoIP网关,提高了识别VoIP网关的主动性和针对性。
-
公开(公告)号:CN115914046A
公开(公告)日:2023-04-04
申请号:CN202110914690.1
申请日:2021-08-10
Applicant: 国家计算机网络与信息安全管理中心
IPC: H04L43/10 , H04L43/50 , H04L65/102 , H04L65/1104 , H04L67/02
Abstract: 本申请提供一种VoIP网关识别方法、装置、设备和存储介质,该方法包括:接收识别指令,所述识别指令中携带有目标主机的IP地址;根据所述目标主机的IP地址,对所述目标主机发送探测报文,接收所述目标主机针对所述探测报文返回的探测应答消息;根据所述探测应答消息,确定所述目标主机是否属于VoIP网关。本申请通过主动探测目标主机的分析方式,来识别目标主机是否为VoIP网关,提高了识别VoIP网关的主动性和针对性。
-
公开(公告)号:CN115525758A
公开(公告)日:2022-12-27
申请号:CN202210628092.2
申请日:2022-06-06
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及一种基于SVM的特定文本大数据分析方法及系统,所述一种基于SVM的特定文本大数据分析方法包括:利用历史特定文本大数据得到历史特定文本大数据特征;利用所述历史特定文本大数据特征获取历史特定文本大数据分析结果,采用SVM的大数据分析系统的技术,全面提高特定文本的分类的准确性和覆盖率,通过在海量数据中实现对特定内容的精准分类,大大提高了特定内容分类的及时性和准确性,从而提高了系统层面对特定内容处理的流转环节,大大提高了应用系统的处理能力。
-
-
-
-
-
-
-
-
-