一种基于关键词特征嵌入语言模型的意图识别方法及系统

    公开(公告)号:CN112989839A

    公开(公告)日:2021-06-18

    申请号:CN201911309397.1

    申请日:2019-12-18

    Abstract: 本发明属于自然语言处理技术领域,具体涉及一种基于关键词特征嵌入语言模型的意图识别方法,包括:采用前后向最大分词算法,对提取的有效文本的语言信息进行分词,获得不同类别的分词结果;针对获得的不同类别的分词结果,获得不同类别的分词结果对应的候选意图相关的关键词列表;剔除每一种类别的分词结果对应的候选意图相关的关键词列表中的通用高频词和领域无关词,获得每一种类别的分词结果对应的最终关键词表,进而获得不同的关键词特征向量;将获得的每一个关键词特征向量嵌入至预先训练好的语言模型,获得带有关键词特征的有效文本的语音信息;并对其进行编码和分类,获得该有效文本的语言信息的意图识别结果。

    一种诈骗短信识别方法及识别系统

    公开(公告)号:CN110267272A

    公开(公告)日:2019-09-20

    申请号:CN201910572213.4

    申请日:2019-06-28

    Abstract: 本发明涉及一种诈骗短信识别方法及识别系统,该方法包括:收集多条历史诈骗短信的相关数据,并从每条历史诈骗短信的相关数据提取历史诈骗短信的特征向量和诈骗类别;根据历史诈骗短信的特征向量和诈骗类别进行诈骗短信模型训练,获取诈骗短信判断模型;接收新短信的相关数据,并从每条新短信的相关数据中提取新短信的特征向量;将新短信的特征向量输入诈骗短信判断模型中,获取新短信是否属于诈骗短信以及属于哪种诈骗类别。本发明收集并根据多条历史诈骗短信的相关数据获取诈骗短信判断模型,该诈骗短信判断模型基于历史诈骗短信的相关数据,不限于短信内容,使得诈骗短信判断模型能够从多方面综合判断新短信是否属于诈骗短信以及哪种诈骗短信。

Patent Agency Ranking