-
公开(公告)号:CN111858728A
公开(公告)日:2020-10-30
申请号:CN202010605313.5
申请日:2020-06-29
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/25
Abstract: 本发明公开了不同数据源的数据抽取方法,包括:获取数据源和数据源属性名,计算数据源属性名与预设属性名的相似度,若所述相似度大于预设阈值,则建立所述数据源属性名与所述预设属性名的映射关系,构建属性名映射表;根据所述属性名映射表,获取与所述预设属性名对应的不同数据源,根据数据源的优先级,按照设定的抽取规则抽取数据入库;以及,不同数据源的数据抽取装置,设备和存储介质。本发明通过自动化创建属性名映射表,可以对不同数据源的数据进行自动抽取,高效地构建不同领域的知识库并自动化更新,成本低。
-
公开(公告)号:CN111581956A
公开(公告)日:2020-08-25
申请号:CN202010269087.8
申请日:2020-04-08
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
Inventor: 赵忠华 , 吴俊杰 , 赵志云 , 葛自发 , 孙小宁 , 张冰 , 王欣欣 , 李欣 , 袁钟怡 , 孙立远 , 付培国 , 王禄恒 , 左源 , 李丰志 , 李英汉 , 户中方
IPC: G06F40/279 , G06F40/216 , G06F40/242 , G06F40/126 , G06F16/335 , G06F16/35 , G06K9/62
Abstract: 本发明公开了一种基于BERT模型和K近邻的敏感信息识别方法,包括:步骤一、对文本进行预处理;步骤二、标注多条预处理文本为敏感信息和非敏感信息,步骤三、表征得到敏感信息的向量表征和非敏感信息的向量表征;步骤四、以敏感信息的向量表征为正类数据、以非敏感信息的向量表征为负类数据,构建近似最邻近搜索图;步骤五、将待测文本的向量表征输入至近似最邻近搜索图,搜索得到近似最近邻的K个节点,判断节点属性及根据该条待测文本的敏感度权重,修正其敏感度值后,判断是否为敏感信息。本发明公开了一种基于BERT模型和K近邻的敏感信息识别系统。本发明具有提升文本质量,提升敏感信息识别的速度和精度的有益效果。
-
公开(公告)号:CN109145109A
公开(公告)日:2019-01-04
申请号:CN201710464424.7
申请日:2017-06-19
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/35 , G06F16/2458 , G06Q50/00
CPC classification number: G06Q50/01
Abstract: 本发明涉及一种基于社交网络的用户群体消息传播异常分析方法和装置,包括:获取在线社交网络中用户群体的历史聊天记录,根据预先设定的时间跨度,获取历史聊天记录在时间跨度内用户群体中所有用户所发布的消息,作为消息集合;对于消息集合,根据预先设定的时间范围统计用户群体在每个时间范围内所发布的消息总数;基于时序相关性的特征提取法,对每个消息总数的特征进行提取,并将提取结果集合为样本集合;根据消息总数并采用聚类算法为样本集合对样本集合进行聚类,生成异常样本;根据异常样本判定其所在的用户群体存在消息传播异常。由此本发明能够应对数据涌发现象,同时算法直观简单,准确率更高,且本发明应用场景广泛。
-
公开(公告)号:CN107153672A
公开(公告)日:2017-09-12
申请号:CN201710171926.0
申请日:2017-03-22
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及一种基于言语行为理论的用户交互意图识别方法及系统,所述用户交互意图识别方法包括:基于外部知识源构建行为标记语词典;根据所述行为标记语词典,自动标注用户在社交媒体平台上输入的在线文本的意图;利用自动标注语料训练基于特征的分类器对所述在线文本的意图进行分类识别,确定用户的交互意图类别。本发明基于言语行为理论的用户交互意图识别方法通过基于外部知识源构建对应不同意图类别的行为标记语词典,并基于行为标记语词典自动标注扩充语料和基于特征分类识别,能够有效识别社交媒体中的用户交互意图,识别准确度高,可用于商务智能、社情舆情、决策评估等领域的意图分析与识别,应用范围广。
-
公开(公告)号:CN106940732A
公开(公告)日:2017-07-11
申请号:CN201710212983.9
申请日:2017-04-01
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及一种面向微博数据的疑似水军发现方法,属于计算机应用技术领域。本发明共分为以下六个步骤,分别为相关微博数据的采集;数据预处理;用户特征提取;构建训练集;训练水军检测模型;预测判别未标注数据。对比现有技术,本发明实现了数据的充分利用,方便快捷的进行群体发现而不用建立复杂的分类检测模型,从而降低了算法的复杂度,并且算法的模块性较高,可以投入大规模数据计算,具有较高的稳定性;本发明除了可以对单一用户进行水军检测,还可以对某一特定事件中的一批用户进行识别,该方法模块性极强,可以稳定适用于大规模数据计算框架下。
-
公开(公告)号:CN113255918B
公开(公告)日:2023-04-25
申请号:CN202110393843.2
申请日:2021-04-13
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06N5/04 , G06F16/36 , G06N5/022 , G06F18/22 , G06F40/126 , G06N3/0455 , G06N3/042
Abstract: 本发明公开了一种强化聚合知识指导的生成常识推理方法,包括:基于知识图谱构建概念推理图和分层概念扩展图;搭建强化聚合指导下基于概念推理图的知识图谱增强型编码器;搭建强化聚合指导下基于分层概念扩展图的知识图谱增强型解码器;训练包含知识图谱增强型编码器和知识图谱增强型解码器的生成常识推理模型;应用训练后的生成常识推理模型生成常识推理语句。本发明提供的方法可以有效避免因未考虑概念之间关系而导致生成语句不符合日常情景、逻辑不合理等一系列问题,通过引入强化聚合过程从知识图谱中筛选能提供丰富关系信息的附加概念描述,有效提升了模型对不可见概念集的概括。
-
公开(公告)号:CN111581956B
公开(公告)日:2022-09-13
申请号:CN202010269087.8
申请日:2020-04-08
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
Inventor: 赵忠华 , 吴俊杰 , 赵志云 , 葛自发 , 孙小宁 , 张冰 , 王欣欣 , 李欣 , 袁钟怡 , 孙立远 , 付培国 , 王禄恒 , 左源 , 李丰志 , 李英汉 , 户中方
IPC: G06F40/279 , G06F40/216 , G06F40/242 , G06F40/126 , G06F16/335 , G06F16/35 , G06K9/62
Abstract: 本发明公开了一种基于BERT模型和K近邻的敏感信息识别方法,包括:步骤一、对文本进行预处理;步骤二、标注多条预处理文本为敏感信息和非敏感信息,步骤三、表征得到敏感信息的向量表征和非敏感信息的向量表征;步骤四、以敏感信息的向量表征为正类数据、以非敏感信息的向量表征为负类数据,构建近似最邻近搜索图;步骤五、将待测文本的向量表征输入至近似最邻近搜索图,搜索得到近似最近邻的K个节点,判断节点属性及根据该条待测文本的敏感度权重,修正其敏感度值后,判断是否为敏感信息。本发明公开了一种基于BERT模型和K近邻的敏感信息识别系统。本发明具有提升文本质量,提升敏感信息识别的速度和精度的有益效果。
-
公开(公告)号:CN113761215A
公开(公告)日:2021-12-07
申请号:CN202110321491.X
申请日:2021-03-25
Applicant: 中科天玑数据科技股份有限公司 , 国家计算机网络与信息安全管理中心
Inventor: 赵忠华 , 李建广 , 余智华 , 王禄恒 , 陈欣洁 , 赵志云 , 冯凯 , 葛自发 , 杜漫 , 孙小宁 , 穆庆伟 , 万欣欣 , 申双成 , 李欣 , 孙立远 , 付培国 , 王晴 , 杜宛真
IPC: G06F16/36 , G06F16/35 , G06F40/242 , G06F40/295
Abstract: 本发明公开了一种基于反馈自学习的动态字典库生成方法,包括以下步骤:S1、字典库定义;S2、基于字典库分类体系;S4、基于语料库导出的标注数据,配合模型参数调整,逐步迭代优化模型;S5、将S4步生成的预测数据回填到字典库。有益效果:该方法通过概念模式定义、自然语言处理技术、全流程调度机制,实现从原始语料概念模式定义生成基础字典库,在基础字典库基础上进行标注模型的自动构建、迭代训练及修正,最后再利用标注模型来进行新的语料数据标注,反馈更新字典库,实现从标注训练到反馈自学习的闭环流程,达到模型自动逐步优化能力。最终实现字典库的自动完善,标注模型逐步优化的全自动循环过程。
-
公开(公告)号:CN113255360A
公开(公告)日:2021-08-13
申请号:CN202110418139.8
申请日:2021-04-19
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F40/30 , G06F40/284 , G06F40/126 , G06F40/216 , G06N3/04 , G06N3/08
Abstract: 本发明实施例公开了基于层次化自注意力网络的文档评级方法和装置。该方法包括:获取目标文档的评论文本,其中,所述评论文本包含多个评论,各评论包含多个句子;提取各句子中各词语的特征;基于自注意力机制,从各评论中各句子所包含全部词语的特征中提取各评论中各句子的特征;基于自注意力机制,从各评论所包含的所述多个句子的特征中提取各评论的特征;基于自注意力机制,从所述多个评论的特征中提取所述评论文本的特征;根据所述评论文本的特征,生成所述目标文档的评级结果。基于该方法和装置,可以充分捕捉目标文档的评论文本所包含的深层次语义信息,进而自动给出针对目标文档的评级结果。
-
公开(公告)号:CN107066554B
公开(公告)日:2020-12-15
申请号:CN201710183767.6
申请日:2017-03-24
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/9535 , G06F16/30
Abstract: 本发明公开了一种微博相关人物推荐方法,包括:步骤一、微博用户识别:解析当前用户所有博文中的多个关键字以及每个关键字的权重Wki;获取至少一篇相匹配博文,相匹配的博文具有所述多个关键字,获取各相匹配博文的微博主,再获取各微博主对多个关键字中各关键字的权重UWki;步骤二、相关用户过滤:从所获取的微博主中筛选掉已经被当前用户关注的微博主,从而获得至少一个相关用户;步骤三、用户相关性权重计算:依据相关性权重公式计算每个相关用户的相关性权重;步骤四、根据所述至少一个相关用户的相关性权重,将相关性权重排名在排序规定值之前的相关用户推荐给当前用户。本发明可以使用户更加方便直接地关注自己感兴趣的内容和微博人物。
-
-
-
-
-
-
-
-
-