-
公开(公告)号:CN103471616B
公开(公告)日:2016-01-27
申请号:CN201310396476.7
申请日:2013-09-04
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种动基座SINS大方位失准角条件下初始对准方法。利用GPS信息确定载体的初始位置参数,采集光纤陀螺仪和石英加速度计输出的数据,运用解析法来完成动基座SINS的粗对准,初步确定载体的姿态信息。建立动基座SINS在大方位失准角情况下的非线性状态方程,并建立动基座条件下以速度误差为观测量的量测方程,利用CKF算法估计出平台失准角,利用平台失准角修正系统的捷联初始姿态矩阵,从而得到精确的捷联初始姿态矩阵,从而完成动基座SINS的精对准过程。本发明可以大幅提高SINS在动基座且方位为大失准角情况下的初始对准精度,为导航过程提供了更加准确的初始姿态矩阵。
-
公开(公告)号:CN103940429A
公开(公告)日:2014-07-23
申请号:CN201410105283.6
申请日:2014-03-21
Applicant: 哈尔滨工程大学
IPC: G01C21/16
CPC classification number: G01C21/16 , G01C21/203
Abstract: 本发明属于惯性导航系统极区导航技术领域,具体涉及一种惯性导航系统利用惯性测量单元的输出值在横地理坐标系下的关系,实时测量出载体相对横坐标系的姿态角的惯性导航系统横坐标系下载体姿态的实时测量方法。本发明包括:测量载体的横速度;更新船舶所在位置的横经度和横地理纬度;得到极区模式中地球角速度在导航系的投影;获得导航坐标系相对于惯性坐标系的角速度在载体坐标系的投影;获得载体相对于导航系的角速度;测量载体的捷联姿态矩阵;测量载体相对横坐标系的姿态角。本发明所设计的方案可以实现高纬度实时导航,为高纬度捷联惯导系统提供数学模型,避免了常用惯导系统在高纬度地区由于计算溢出而无法导航的问题。
-
公开(公告)号:CN103900571A
公开(公告)日:2014-07-02
申请号:CN201410120577.6
申请日:2014-03-28
Applicant: 哈尔滨工程大学
Abstract: 本发明属于惯性导航技术领域,具体涉及一种可用于实时测量载体的导航参数值的基于惯性坐标系旋转型捷联惯导系统的载体姿态测量方法。本发明包括:捷联惯导系统开机预热1小时后进行初始对准;采集陀螺仪输出角速度、加速度计输出比力和转台输出角速率;测量惯性系与控制惯性测量单元IMU坐标系之间的方向余弦矩阵;测量比力在地理坐标系的投影;测量载体的速度和位置;测量惯性系与地理系之间的方向余弦矩阵;测量载体的位置角速率在惯性系的投影;测量角速度在惯性坐标系的投影;测量载体的姿态速率;测量载体坐标系与导航坐标系之间的方向余弦矩阵;测量载体的纵摇角、横摇角和航向角。本发明能完全消除器件误差,为系统提供载体姿态信息。
-
公开(公告)号:CN103900569A
公开(公告)日:2014-07-02
申请号:CN201410121059.6
申请日:2014-03-28
Applicant: 哈尔滨工程大学
IPC: G01C21/16
CPC classification number: G01C21/165 , G01C25/005 , G01S19/49
Abstract: 本发明提供的是一种微惯导与DGPS和电子罗盘组合导航姿态测量方法。首先利用微惯导、电子罗盘对组合系统进行初始对准,得到载体坐标系b到导航坐标系n的初始姿态矩阵;进而可以计算出载体的初始姿态值;利用微惯导系统的位置、速度、姿态及惯性传感器的误差方程,建立扩展卡尔曼滤波器的状态方程;利用电子罗盘和GPS分别建立的观测方程组成扩展卡尔曼滤波器的观测方程;利用扩展卡尔曼滤波器进行实时估测微惯导系统姿态误差;利用得到的姿态误差进行修正姿态矩阵,并计算出微惯导系统新的姿态值。本发明的方法是利用电子罗盘和GPS辅助微惯导系统来提高导航姿态精度的方法。
-
公开(公告)号:CN103455675A
公开(公告)日:2013-12-18
申请号:CN201310397651.4
申请日:2013-09-04
Applicant: 哈尔滨工程大学
IPC: G06F17/50
Abstract: 本发明公开了一种基于CKF的非线性异步多传感器信息融合方法。分别对各个传感器分别利用CKF估计出各自的状态变量,然后采用细分时间片方法将信息融合中心的时间间隔设定为各传感器间最高精度时间单位,在相应时刻对异步多传感器的估计结果进行判断和融合,得到更加精确的状态变量估计结果。本发明可以增强对异步多传感器信息的利用率,大幅提高多传感器系统中状态变量的估计精度,增强系统的生存能力。
-
公开(公告)号:CN103453917A
公开(公告)日:2013-12-18
申请号:CN201310397375.1
申请日:2013-09-04
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种双轴旋转式捷联惯导系统初始对准与自标校方法。对于惯性导航系统而言,惯性器件误差及失准角是影响系统定位精度的主要因素。为了满足长航时、高精度的要求,必须要对器件误差及失准角进行标校,进而保证系统定位精度。本发明提出的这种转位方案,在无需外部辅助信息的条件下最大程度地提高惯性导航系统的可观测度,不仅能够快速准确地标校出失准角,还能够标校出常值陀螺漂移误差、加速度计零位误差、陀螺仪刻度因数误差等主要惯性器件误差,对误差进行补偿之后可以大大提高捷联惯导系统的定位精度。
-
公开(公告)号:CN103401533A
公开(公告)日:2013-11-20
申请号:CN201310296089.6
申请日:2013-07-15
Applicant: 哈尔滨工程大学
IPC: H03H17/02
Abstract: 本发明涉及一种基于HMM/KF稳态反馈的数字滤波方法。本发明包括:对光纤陀螺的采样输出信号建立二阶HMM/KF滤波方程;监测HMM/KF滤波过程的参数矩阵;对稳态的HMM/KF滤波模型做等效数字处理;对光纤陀螺的原始输出信号建立四阶巴特沃斯IIR低通滤波模型,并采用HMM/KF稳态模型的等效截止频率fc对具有高频噪声的光纤陀螺的输出信号滤波消噪。该方法综合了隐马尔科夫模型稳定性好和卡尔曼滤波器实时性好的特点,实时稳定的为后续的四阶IIR滤波器智能的提供一个滤波截止频率,从而显著的提高了系统的精度,而且四阶IIR滤波器延时小,进一步满足了惯导系统实时性的要求。
-
公开(公告)号:CN103398724A
公开(公告)日:2013-11-20
申请号:CN201310321532.0
申请日:2013-07-29
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种惯性导航系统极区模式横经度初始值的测量方法,包括以下步骤:采集惯性导航系统正常模式输出的经度信息和地理纬度信息;利用惯性导航系统所在位置的地理纬度,测量地心纬度信息;根据惯性导航系统输出的经度和地心纬度得到横地心纬度的测量值;根据惯性导航系统输出的经度、地心纬度和横地心纬度得到横地心经度测量值。本发明由惯性导航系统输出的地理纬度测量出地心纬度,避免了通常将惯性导航系统输出的纬度信息近似为地心纬度的所造成的误差,提高了横经度的测量精度,从而减小惯性导航系统模式转换的误差。本发明只需惯性导航系统正常模式下输出的位置信息就可以测量出横地心纬度,测量方法简单方便,有利于实际应用。
-
公开(公告)号:CN103900571B
公开(公告)日:2017-06-20
申请号:CN201410120577.6
申请日:2014-03-28
Applicant: 哈尔滨工程大学
Abstract: 本发明属于惯性导航技术领域,具体涉及一种可用于实时测量载体的导航参数值的基于惯性坐标系旋转型捷联惯导系统的载体姿态测量方法。本发明包括:捷联惯导系统开机预热1小时后进行初始对准;采集陀螺仪输出角速度、加速度计输出比力和转台输出角速率;测量惯性系与控制惯性测量单元IMU坐标系之间的方向余弦矩阵;测量比力在地理坐标系的投影;测量载体的速度和位置;测量惯性系与地理系之间的方向余弦矩阵;测量载体的位置角速率在惯性系的投影;测量角速度在惯性坐标系的投影;测量载体的姿态速率;测量载体坐标系与导航坐标系之间的方向余弦矩阵;测量载体的纵摇角、横摇角和航向角。本发明能完全消除器件误差,为系统提供载体姿态信息。
-
公开(公告)号:CN103940443B
公开(公告)日:2017-02-08
申请号:CN201410085432.7
申请日:2014-03-11
Applicant: 哈尔滨工程大学
IPC: G01C25/00
Abstract: 本发明属于惯性导航技术领域,具体涉及一种利用系统测量组件相对惯性空间匀速转动时的输出值,快速标定出陀螺仪的所有误差参数值的陀螺仪误差标定的方法。本发明包括:将捷联惯导系统安装在转位机构上,转位机构的三根转动轴分别沿载体的右-前-上方向,系统开机预热后进行对准,获得初始捷联姿态矩阵;测量初始时刻IMU坐标系相对惯性坐标系的姿态角,控制转位机构带动IMU按照测量出的姿态角逐次转动,使IMU坐标系与惯性坐标系重合。本发明可消除系统中高频噪声的影响,且IMU相对惯性坐标系转动使陀螺仪的输出信号增大抗干扰性更强,此外该方法转位次序简单运算简便,可有效提高陀螺仪标定的速度和精度。
-
-
-
-
-
-
-
-
-