-
公开(公告)号:CN114498059A
公开(公告)日:2022-05-13
申请号:CN202210206601.2
申请日:2022-03-02
Applicant: 哈尔滨工程大学
IPC: H01Q15/00
Abstract: 本发明提供了一种基于二氧化钒的透反可调的太赫兹编码超材料,材料单元结构由金属层和介质层组成,各个金属层之间以介质层相间隔,金属层包括两种结构,第一结构用于实现编码,第二结构用于实现透射和反射的转变,本发明通过调节第一结构的金属和二氧化钒长度不同得到四个不同的单元结构,四个单元结构之间的电磁响应相位相差π/2,实现2比特编码,利用二氧化钒的温控相变特性,第二结构能够实现垂直入射电磁波在透射和反射这两种光传输现象之间转换。当二氧化钒处于介质态时,能够实现光的异常透射,当二氧化钒处于金属态的时候,能够实现光的异常反射。
-
公开(公告)号:CN108197430B
公开(公告)日:2022-04-29
申请号:CN201810057819.X
申请日:2018-01-22
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种基于迁移学习的功能型microexon识别方法,包括:步骤一、microindels样本标签获取,步骤二、microexon和microindels特征提取,步骤三、基于迁移学习的microexon和microindels特征空间迁移,步骤四、基于迁移学习的功能型microexon识别模型的构建。本发明利用迁移学习,通过对具有样本类别标签的microindels的识别模型,识别功能性microexon。
-
公开(公告)号:CN112964679B
公开(公告)日:2022-02-01
申请号:CN202110286706.9
申请日:2021-03-17
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种基于PT对称结构的气体浓度传感器,包括:损耗层、第一电感层、第二电感层和增益层,其中,从左至右依次设置损耗层、第一电感层、第二电感层和增益层,损耗层和第一电感层之间为空气层,第一电感层和第二电感层之间为待检测气体层,第二电感层和增益层之间为空气层,且损耗层和第一电感层之间的距离与第二电感层和增益层之间的距离相等。该传感器结构简单,成本低,可以避免气敏材料及其复杂的制备工艺,也可以检测由低密度气体分子引起的折射率极小规模扰动,并且在低浓度范围内具有高灵敏度的优势。
-
公开(公告)号:CN113225039A
公开(公告)日:2021-08-06
申请号:CN202110447467.0
申请日:2021-04-25
Applicant: 哈尔滨工程大学
IPC: H03H7/01 , G06F30/373
Abstract: 本发明公开了一种基于拓扑绝缘体的鲁棒性谐振器,包括:多个基本单元、第一耦合电感、第二耦合电感、第一耦合电容和第二耦合电容,其中,基本单元由小于或者等于四个的谐振器、小于或者等于四个的接地电容、小于或者等于四个的接地电感并联构成,且所有谐振器、接地电容与接地电感个数总和为四,每个基本单元内部采用第一耦合电感或第一耦合电容进行耦合,每个基本单元之间采用第二耦合电感或或第二耦合电容进行耦合,最终电路的实空间拓扑结构类似于Ammann‑Beenker的准晶结构。该谐振器结构简单、成本低,并且具有天然的抗干扰特性,即当谐振器周围环境发生重大变化进而影响元器件的电气特性时,谐振器的频率特性几乎不受影响。
-
公开(公告)号:CN112985635A
公开(公告)日:2021-06-18
申请号:CN202110286707.3
申请日:2021-03-17
Applicant: 哈尔滨工程大学
IPC: G01K11/00
Abstract: 本发明公开了一种基于PT对称的无线温度传感器,包括:损耗层、第一电感层、第二电感层和增益层,其中,近距离传感时,无线温度传感器由损耗层、第一电感层和增益层依次相连而成,损耗层和第一电感层之间为铌酸锂材料,其余空间为空气;远距离传感时,无线温度传感器由损耗层、第一电感层、第二电感层和增益层依次相连而成,损耗层与第一电感层之间为铌酸锂材料,第一电感层和第二电感层之间为空气,第二电感层和增益层之间为空气。该无线温度传感器采取读取固定波长处的透射率大小,可以简化数据读取过程,同时,可以通过改变传感器中电感层的放置方式和个数,可调整传感器近距离传感模式和远距离传感模式,实现在高温恶劣环境下温度的测试。
-
公开(公告)号:CN112964679A
公开(公告)日:2021-06-15
申请号:CN202110286706.9
申请日:2021-03-17
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种基于PT对称结构的气体浓度传感器,包括:损耗层、第一电感层、第二电感层和增益层,其中,从左至右依次设置损耗层、第一电感层、第二电感层和增益层,损耗层和第一电感层之间为空气层,第一电感层和第二电感层之间为待检测气体层,第二电感层和增益层之间为空气层,且损耗层和第一电感层之间的距离与第二电感层和增益层之间的距离相等。该传感器结构简单,成本低,可以避免气敏材料及其复杂的制备工艺,也可以检测由低密度气体分子引起的折射率极小规模扰动,并且在低浓度范围内具有高灵敏度的优势。
-
-
-
-
-