-
公开(公告)号:CN107728109A
公开(公告)日:2018-02-23
申请号:CN201710837758.4
申请日:2017-09-18
Applicant: 哈尔滨工程大学
IPC: G01S5/22
CPC classification number: G01S5/22
Abstract: 本发明公开了一种非合作目标辐射噪声测量定位技术,基于矢量水听器测量技术,构造了矢量水听器的声压、振速接收模型,利用矢量水听器的声压振速联合处理技术,采用互谱声强法,得到基线的测量方位角;通过三角形交汇法解算每组基线所测得的目标位置坐标信息。对于多只矢量水听器的定位,可视为矢量水听器的两两组合,而后再通过数据融合处理技术,综合所有基线的测量结果,确定运动目标的每一个测量点的位置。最后利用卡尔曼滤波算法进行后置处理,对运动目标的轨迹做进一步的优化。数据融合技术结合卡尔曼滤波算法可以提高定位精度,在小范围内快速、精确的定位出目标的运动轨迹,解决两只水听器定位精度较差、跟踪速度较慢的问题。
-
公开(公告)号:CN105021702A
公开(公告)日:2015-11-04
申请号:CN201510459735.5
申请日:2015-07-31
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种基于复倒谱的水声材料声反射系数自由场宽带测量方法。包括以下步骤,生成宽带压缩脉冲信号作为发射信号;声压水听器接收信号,并对接收信号进行截取,剔除待测水声材料边缘衍射波,获得直达波信号与反射波信号的混合信号;获得直达波信号的重构信号;获得待测水声材料的声反射系数。本发明利用宽带压缩脉冲信号作为发射信号形式,克服了自由场测量中待测样本的边缘衍射效应,实现在较大角度入射情况下水声材料声反射系数的测量。提出了基于复倒谱的测量方法,避免了实倒谱法中反射信号实倒谱提取与补零带来的误差。本发明只需一次测量即可得到测量频带的声反射系数,操作应更加方便易行。
-
公开(公告)号:CN119004948A
公开(公告)日:2024-11-22
申请号:CN202410963633.6
申请日:2024-07-18
Applicant: 哈尔滨工程大学
IPC: G06F30/27 , G06F111/06 , G06F119/10
Abstract: 本发明涉及一种基于舱室内临近壁面声监测点优化布置的内声场重构方法,属于封闭空间噪声测试技术领域,包括:构建舱室内声场的数值计算模型,确定舱室声腔模态截断阶数,计算舱室内临近壁面上声监测点位置处各阶声腔模态的声压;采用模态置信矩阵作为目标函数,基于量子行为粒子群优化算法对声监测点位置进行优化,获得声监测点优化布置方案;根据声监测点优化布置方案在舱室内部布置声监测点,采集实测的声场数据,重构舱室内临近壁面声场;最后采用等效源法对舱室内任意位置声场进行重构。本发明通过优化声监测点布置方案,实现声源激励下的舱室内部任意位置的声场重构,提高了重构精度,同时声监测点位于舱室内临近壁面位置上,便于工程实现。
-
公开(公告)号:CN118940518A
公开(公告)日:2024-11-12
申请号:CN202410997545.8
申请日:2024-07-24
Applicant: 哈尔滨工程大学
IPC: G06F30/20
Abstract: 本发明公开了一种建立水下非线性声散射声场的组合波束发射方法,考虑相控发射模块间的互声散射声,建立针对多个相控发射模块组阵的改进MGB模型,再通过非线性声场指向性的计算结果,正向设计各模块的组合方向、组合间距以及相控角度,最后计算各立体角下的非线性声场,观测评估组合波束的技术效果。本发明根据非线性声波在海洋波导中远程传播的不同应用需求,利用较少的相控发射模块,能够简单有效地建立满足需要的水下非线性声散射声场。
-
公开(公告)号:CN118642038A
公开(公告)日:2024-09-13
申请号:CN202410748723.3
申请日:2024-06-12
Applicant: 哈尔滨工程大学
IPC: G01S3/80
Abstract: 本发明提供一种近场散射下基于幅度相位修正的单矢量水听器测向方法,属于水下目标声学探测领域,包括以下步骤:通过试验测量或数值仿真,获取单矢量水听器在自由场条件下,声压振速幅度相位响应h(θ);以相同方式获取指向性畸变条件下,单矢量水听器声压振速幅度相位响应h'(θ,f);计算指向性畸变前后的响应比值Δ(θ,f),将该比值作为先验信息留以备用;矢量水听器应用在相同散射条件下,在探测频率为#imgabs0#目标时(方位未知),使用响应比值对接收信号幅度相位逐一修正,构造函数#imgabs1#计算角度遍历后的F曲线,F取最小值所对应角度即为目标方位#imgabs2#根据目标方位#imgabs3#还原出该目标对应自由场条件下信号y'(t)。本发明实现了近场散射下的目标测向,为矢量水听器在水下平台上的应用奠定基础。
-
公开(公告)号:CN118428261A
公开(公告)日:2024-08-02
申请号:CN202410520291.0
申请日:2024-04-28
Applicant: 哈尔滨工程大学
IPC: G06F30/28 , G01N29/036 , G01N29/44 , G06F17/11 , G06F111/10 , G06F113/08 , G06F119/14
Abstract: 本发明属于非线性声学领域,涉及非均匀含气泡水介质中二维非线性声场的数值建模方法,目的在于可以计算得出二维含非均匀气泡水介质中声波的声传播规律,具体步骤包括:将气泡二阶非线性体积振动方程与非线性波动方程耦合,得到非线性声场二维时域模型;进行网格划分;将非线性波动方程和气泡体积二阶非线性振动方程中的微分项改写为差分形式、并联立得到非线性波动方程和气泡体积二阶非线性振动的差分方程组格式;设置声压和气泡体积变化量初始值和吸收边界条件;本技术方案能够准确得出含气泡水介质的二维声场,适应气泡均匀分布与非均匀分布条件,为后续研究非均匀含气泡水介质的声学特性和声波的空间传播以及互作用规律提供了有力的支撑。
-
公开(公告)号:CN113624330B
公开(公告)日:2023-11-17
申请号:CN202110783635.3
申请日:2021-07-12
Applicant: 哈尔滨工程大学
IPC: G01H17/00
Abstract: 本发明公开了一种水下目标辐射噪声测量组合体积阵及测量方法,包括螺旋双圆锥声压体积阵和矢量稀疏垂直阵,所述螺旋双圆锥声压体积阵具体为:将M条相同的均匀垂直线阵的底端均匀排列在一个半径为R的圆周上,形成一个半径为R,高度为L的圆柱阵,然后将各条垂直线阵的底端固定,顶端绕圆柱的轴线沿圆的周向方向逆时针旋转相同的角度α,得到定义的螺旋双圆锥阵,所述均匀垂直线阵阵元数为N,阵元间距为d1,长度为L;所述矢量稀疏垂直阵共有NS个阵元,d2为阵元间距,矢量稀疏垂直阵中心阵元位于螺旋双圆锥声压体积阵半径最小的圆形横截面的圆心位置且垂直于所述横截面,且各阵元均匀分布。本发明实现对水下目标全频带的高精度辐射噪声测量。
-
公开(公告)号:CN115561764A
公开(公告)日:2023-01-03
申请号:CN202211193226.9
申请日:2022-09-28
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种基于单矢量水听器的运动目标深度估计方法,利用矢量水听器接收声压、振速信号;构建声压‑振速互谱;对声压、振速接收信号进行时域等间隔离散化处理,构建离散信号矩阵;获得初步去噪声压、振速信号;通过EWT对信号进行分解,根据LOFAR谱分析估计信号频率确定该包含该频率的模态函数分量对信号进行重构;构建声压‑振速声场空间干涉谱;计算水平复声强和垂直复声强估计目标直达波垂直到达角;对声压‑振速声场空间干涉谱沿目标直达波垂直到达角曲线进行离散傅里叶变换,去除垂直对称轴处的极大值后的次极大值对应深度为目标深度估计值。本发明实现在噪声影响下利用接收信号实现对运动目标深度的估计,具有较好的实际工程应用能力。
-
-
公开(公告)号:CN109933949B
公开(公告)日:2022-08-02
申请号:CN201910262885.5
申请日:2019-04-02
Applicant: 哈尔滨工程大学
IPC: G06F30/23 , G06F30/28 , G06F113/08 , G06F119/14
Abstract: 本发明涉及一种建立含气泡水介质中波动‑振动非线性声场的方法,建立“波动‑气泡体积三阶振动”方程;设置初始条件和边界条件;确定时间长度Tt和空间距离Tl,设置步长划分网格;微分项改写为差分形式;通过对声源项耦合“波动‑气泡体积三阶振动”方程,得到差分方程组;设置声压和气泡体积变化量初始值;计算时间节点nt气泡体积变化值和声压值后nt加1;当nt≤Nt时,重复上一步,计算至时间域最后点Nt,当nt=Nt时,重新设置nt=3;利用初始参数和计算空间域上最后节点Ns上的声压值nt加1;当nt≤Nt时,重复上一步,计算至时间域最后点Nt。本发明通过声压激励项进行耦合,对波动—振动非线性方程进行数值耦合计算,同时获得含气泡水介质中非线性声场特性和气泡非线性动力学特性。
-
-
-
-
-
-
-
-
-