一种隐私增强的结构化数据仿真生成方法及系统

    公开(公告)号:CN117313160A

    公开(公告)日:2023-12-29

    申请号:CN202311553385.X

    申请日:2023-11-21

    Abstract: 本发明提供了一种隐私增强的结构化数据仿真生成方法及系统,该方法包括:步骤一,数据转换阶段:对数据进行规范化预处理;步骤二,概率图模型构建阶段:基于贝叶斯形式对所述步骤一进行规范化预处理的数据构建变分推断的后验分布,利用斯坦因变分梯度下降方法得到描述结构化数据特征间的关联关系,在引入差分隐私噪声时,采用蒙特卡洛估计算法自动获得每步更新所需添加的噪声量;步骤三,数据生成阶段:将所述步骤二得到的关联关系作为度量集合,生成与真实数据更加精确的仿真数据。本发明的有益效果是:本发明方法避免了在应用DP‑SGD时对梯度进行剪裁,不仅避免了剪裁参数的选择,而且缓解了梯度剪裁对推断过程的不利影响。

    一种结构化仿真数据生成系统及生成方法

    公开(公告)号:CN115169252B

    公开(公告)日:2022-12-13

    申请号:CN202211086686.1

    申请日:2022-09-07

    Abstract: 本发明公开了一种结构化仿真数据生成系统及生成方法,所述系统包括数据预处理单元以及训练和生成单元,所述数据预处理单元用于将原始数据中的每个样本转换成向量表示,并且在转换的过程中建模贝叶斯网络用以描述特征间的关联关系;所述训练和生成单元利用原始数据转换后的向量表示进行训练,得到仿真数据生成模型,利用所述仿真数据生成模型生成仿真数据记录。本发明系统和方法能够同时生成含有连续型特征和离散型特征的仿真数据记录;针对生成仿真数据,既保持了与原始数据一致的数据分布,也保证了与原始数据一致的特征间关联关系;同时提出一种根据所需条件生成仿真数据的方法,能够根据不同的仿真数据应用场景生成分析所需的仿真数据记录。

    一种用于源代码漏洞检测的代码属性图压缩方法及装置

    公开(公告)号:CN113987522B

    公开(公告)日:2022-05-03

    申请号:CN202111637333.1

    申请日:2021-12-30

    Abstract: 本发明公开了一种用于源代码漏洞检测的代码属性图压缩方法及装置,所述方法包括如下步骤:根据代码属性图计算基于前K跳邻居的节点邻域信息增益;对节点邻域信息增益进行局部归一化处理;选择归一化处理后的节点邻域信息增益低的节点组成候选删除节点集合,判断候选删除节点集合中是否存在割点,并将割点从候选删除节点集合中移除,最终得到删除节点集合;从代码属性图中去掉删除节点集合中的节点以及与节点相连的边,得到代码属性压缩图。本发明通过计算节点的前K跳邻居增益信息,选择增益信息低的节点进行删除同时保证压缩图的连通性,在尽可能保持代码属性图的节点属性和结构特征的情况下降低其复杂度,从而提高后续模型训练的时空效率。

    一种层次化自适应代码生成方法、系统及介质

    公开(公告)号:CN119248289B

    公开(公告)日:2025-05-16

    申请号:CN202411775766.7

    申请日:2024-12-05

    Abstract: 本发明公开了一种层次化自适应代码生成方法、系统及介质,该方法包括:基于代码token类型预测模块分析待生成代码的上下文,识别下一个待生成token的基本类型,所述基本类型包括基本结构、代码逻辑和高级语义内容;基于解码层自适应选择算法,自动选择适当的模型层进行输出预测;利用三种不同的分类解码策略分别生成属于基本结构、代码逻辑和高级语义内容的token。本发明提高了LLMs在代码生成任务中的可靠性,使模型能够更有效地利用其内在各层次的知识,减少了生成代码的结构性或语义性错误,能有效确保生成代码的逻辑性和可执行性。

Patent Agency Ranking