-
公开(公告)号:CN113918743A
公开(公告)日:2022-01-11
申请号:CN202111526779.7
申请日:2021-12-15
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F16/51 , G06F16/54 , G06V10/774 , G06V10/764 , G06K9/62
Abstract: 本发明提供了一种面向长尾分布场景下图片分类的模型训练方法,包括:构建第一损失函数,用于加入原型归一化以及角域上与类别数量相关的带有边界的交叉熵分类损失;构建第二损失函数,使得各个类别的原型分散的更加均匀的,与类别数量相关最小角度最大化的正则项损失;构建第三损失函数,用于帮助模型有效训练的特征向量模长大小的正则化损失;将第一损失函数、第二损失函数、第三损失函数组合起来得到最终的损失函数Loss。本发明的有益效果是:本发明可以避免训练数据不均衡带来的模型先验偏差的问题以及进一步提升模型在测试集上的泛化性,从而在长尾分布场景下提升图片分类准确率。
-
公开(公告)号:CN113918743B
公开(公告)日:2022-04-15
申请号:CN202111526779.7
申请日:2021-12-15
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06F16/51 , G06F16/54 , G06V10/774 , G06V10/764 , G06K9/62
Abstract: 本发明提供了一种面向长尾分布场景下图片分类的模型训练方法,包括:构建第一损失函数,用于加入原型归一化以及角域上与类别数量相关的带有边界的交叉熵分类损失;构建第二损失函数,使得各个类别的原型分散的更加均匀的,与类别数量相关最小角度最大化的正则项损失;构建第三损失函数,用于帮助模型有效训练的特征向量模长大小的正则化损失;将第一损失函数、第二损失函数、第三损失函数组合起来得到最终的损失函数Loss。本发明的有益效果是:本发明可以避免训练数据不均衡带来的模型先验偏差的问题以及进一步提升模型在测试集上的泛化性,从而在长尾分布场景下提升图片分类准确率。
-