-
公开(公告)号:CN120004643A
公开(公告)日:2025-05-16
申请号:CN202510227354.8
申请日:2025-02-27
Applicant: 哈尔滨工业大学
IPC: C04B35/80 , C04B35/10 , C04B35/622 , C04B35/634 , C04B35/636 , C04B35/63
Abstract: 本发明涉及一种抗氧化耐烧蚀短切氧化物纤维预制体及其成型制备方法,属于防隔热材料技术领域,该抗氧化耐烧蚀短切氧化物纤维预制体的成型制备方法包括:将短切氧化物纤维、多元陶瓷组分、粘结剂、吸附剂、水溶性粘度调节剂和水混合,经加热搅拌,得到浆料;将所述浆料进行醇洗、压滤,得到湿坯;将所述湿坯进行干燥、固化、炭化,得到抗氧化耐烧蚀短切氧化物纤维预制体。本发明提供的抗氧化耐烧蚀短切氧化物纤维预制体的成型制备方法可以克服原料密度差异,实现将中密度陶瓷颗粒、低密度空心陶瓷微球均匀地引入高密度短切氧化物纤维预制体内部,得到具有优异性能的轻质抗氧化耐烧蚀短切氧化物纤维预制体。
-
公开(公告)号:CN118771849B
公开(公告)日:2025-02-25
申请号:CN202410812386.X
申请日:2024-06-21
Applicant: 哈尔滨工业大学
Abstract: 本发明提供了一种氧化锆气凝胶改性的轻质防隔热纤维预制体及其制备方法,属于防隔热复合材料领域,该氧化锆气凝胶改性的轻质防隔热纤维预制体的制备方法包括如下步骤:将锆的化合物、溶剂、pH调节剂、交联剂、孔结构控制剂和干燥控制剂混合,得到二氧化锆气凝胶前驱液;将纤维预制体浸渍于二氧化锆气凝胶前驱液中并加入凝胶促进剂,经凝胶反应、溶剂置换、干燥、热处理,得到氧化锆气凝胶改性的轻质防隔热纤维预制体。本发明提供的氧化锆气凝胶改性的纤维预制体的制备方法解决了传统ZrO2气凝胶制备中收缩率大、稳定性差、成型难度高和成本高的问题,适合大批量生产。
-
公开(公告)号:CN118652518B
公开(公告)日:2024-12-13
申请号:CN202410794423.9
申请日:2024-06-19
Applicant: 哈尔滨工业大学
Abstract: 本发明提供了一种各向异性酚醛气凝胶复合材料及其制备方法,属于复合材料领域,所述各向异性酚醛气凝胶复合材料包括酚醛气凝胶基体和纤维增强体;所述酚醛气凝胶基体为具有各向异性纳米孔结构的酚醛气凝胶。本发明提供的酚醛气凝胶复合材料中的醛树脂气凝胶基体为具有各向异性纳米孔结构的酚醛气凝胶,具有更好的取向结构和各向异性,可实现热量的定向传导,克服了由内部无序纳米颗粒堆积而成的各向同性传统酚醛气凝胶无法实现定向的传质、传热等功能的问题,突破了其无法在定向传质和传输领域应用与发展的局限,大大拓展了酚醛气凝胶的应用范围,在离子导体、环境净化、过滤及能源催化领域具有广泛的应用前景。
-
公开(公告)号:CN118852717A
公开(公告)日:2024-10-29
申请号:CN202410850229.8
申请日:2024-06-28
Applicant: 哈尔滨工业大学
Abstract: 本发明涉及一种表层密度可控的防隔热梯度化复合材料及其制备方法。所述方法:将热熔型酚醛树脂、陶瓷化填料和溶剂在40~90℃下混匀,将得到的预混物用涂布机涂覆在离型纸上,得到混合膜;将混合膜铺覆在纤维预制体的一面并利用真空袋压工艺使混合膜浸渍入纤维预制体内;重复该步骤,直至纤维预制体内浸渍的预混物达到预设的浸渍厚度;将完成浸渍后的纤维预制体在100~200℃下固化处理,得到表层密度可控的纤维预制体;用酚醛树脂溶液浸渍表层密度可控的纤维预制体,再依次经溶胶‑凝胶、溶剂置换和常压干燥,制得表层密度可控的防隔热梯度化复合材料。本发明制备的材料兼具优异的隔热性能和抗烧蚀性能,在热防护领域有很大应用前景。
-
公开(公告)号:CN118851194A
公开(公告)日:2024-10-29
申请号:CN202410850213.7
申请日:2024-06-27
Applicant: 哈尔滨工业大学
Abstract: 本发明提供了一种抗氧化耐烧蚀SiBONC气凝胶及其制备方法,该方法包括:(1)将硅烷类助溶剂、醇溶剂和改性剂搅拌混匀,得到混合溶液;其中,所述改性剂为含有硼元素的化合物,所述硅烷类助溶剂为含有氮元素的硅烷类助溶剂;(2)向所述混合溶液中加入交联剂和水,反应后得到反应溶液;(3)将所述反应溶液依次进行固化和干燥,得到所述抗氧化耐烧蚀SiBONC气凝胶。本发明中利用含有氮元素的硅烷类助溶剂与改性剂之间的配位作用,从而将大量的硼元素引入气凝胶中实现气凝胶的改性,如此使得制备得到的气凝胶具有较好的抗氧化性、耐烧蚀性和力学性能。
-
公开(公告)号:CN118652518A
公开(公告)日:2024-09-17
申请号:CN202410794423.9
申请日:2024-06-19
Applicant: 哈尔滨工业大学
Abstract: 本发明提供了一种各向异性酚醛气凝胶复合材料及其制备方法,属于复合材料领域,所述各向异性酚醛气凝胶复合材料包括酚醛气凝胶基体和纤维增强体;所述酚醛气凝胶基体为具有各向异性纳米孔结构的酚醛气凝胶。本发明提供的酚醛气凝胶复合材料中的醛树脂气凝胶基体为具有各向异性纳米孔结构的酚醛气凝胶,具有更好的取向结构和各向异性,可实现热量的定向传导,克服了由内部无序纳米颗粒堆积而成的各向同性传统酚醛气凝胶无法实现定向的传质、传热等功能的问题,突破了其无法在定向传质和传输领域应用与发展的局限,大大拓展了酚醛气凝胶的应用范围,在离子导体、环境净化、过滤及能源催化领域具有广泛的应用前景。
-
公开(公告)号:CN118637937A
公开(公告)日:2024-09-13
申请号:CN202410830366.5
申请日:2024-06-25
Applicant: 哈尔滨工业大学
IPC: C04B35/83 , C04B35/84 , C04B35/82 , C04B35/80 , C04B35/624 , C04B35/524 , B01J13/00 , C04B38/00
Abstract: 本发明涉及一种耐烧蚀隔热碳气凝胶复合材料的制备方法。所述方法为:碳气凝胶复合材料的制备;将酚醛树脂、酚醛气凝胶粉末、分散剂和溶剂混合均匀,得到酚醛溶液,用酚醛溶液浸渍碳气凝胶复合材料后静置,再在400~600℃下预碳化处理;将酚醛树脂、固化剂、溶剂和分散剂混合均匀,得到修复溶液,用修复溶液一次浸渍预处理的碳气凝胶复合材料,然后进行超声处理与二次浸渍,最后依次进行凝胶、老化和碳化,重复该步骤2~5次,实现对碳气凝胶复合材料的纳米修复,制得耐烧蚀隔热碳气凝胶复合材料。本发明对传统碳气凝胶复合材料进行了微观结构优化,通过纳米修复制备工序,获得了密度低、隔热性好、烧蚀率低的耐烧蚀隔热碳气凝胶复合材料。
-
公开(公告)号:CN118580541A
公开(公告)日:2024-09-03
申请号:CN202410787954.5
申请日:2024-06-18
Applicant: 哈尔滨工业大学
Abstract: 本发明涉及一种轻质可陶瓷化钛改性酚醛基复合材料的制备方法。所述方法:配制酚醛溶液;配制含钛溶液;在10s内往酚醛溶液中加入含钛溶液并在室温下以200~400r/min的速度进行搅拌,得到钛改性酚醛树脂,进行搅拌的时间根据含钛溶液中的钛酸酯含量确定;将钛改性酚醛树脂导入纤维预制体中,然后依次经固化、溶剂置换和干燥,制得轻质可陶瓷化钛改性酚醛基复合材料。本发明中的钛改性酚醛基体提高了复合材料的化学稳定性和热稳定性,并且在高温下能够实现表面原位陶瓷化并反射红外热辐射,有望替代现有纤维增强酚醛气凝胶复合材料成为新型航天热防护材料。
-
公开(公告)号:CN112936657B
公开(公告)日:2023-01-31
申请号:CN202110128115.9
申请日:2021-01-29
Applicant: 哈尔滨工业大学
IPC: B29B15/08 , B29B15/10 , B29B15/12 , C08L61/06 , C08K7/06 , C08K7/10 , C08K7/28 , C08K3/34 , C08K3/38 , C08J9/00 , B29K61/04
Abstract: 本发明公开了一种抗氧化叠层结构纤维编织体增强酚醛树脂复合材料的方法,属于热防护技术领域。本发明解决了现有纤维增强酚醛树脂复合材料烧蚀后表面形貌差,高温下抗氧化性能差、力学强度差的问题。本发明首先采用无机陶瓷填料和陶瓷先驱体改性叠层结构纤维编织体,然后使用该叠层结构纤维编织体增强酚醛树脂复合材料。本发明获得的复合材料具有烧蚀后表面形貌较平整、高温下抗氧化性能高、密度低、热导率低的特点,可以应用于中等、低等空气及真空热流环境下飞行器热防护系统。
-
公开(公告)号:CN112940445B
公开(公告)日:2022-12-16
申请号:CN202110122178.3
申请日:2021-01-27
Applicant: 哈尔滨工业大学
Abstract: 一种陶瓷微球改性碳纤维预制体增强硅氧碳‑酚醛复合材料及其制备方法。本发明属于耐烧蚀复合材料制备领域。本发明的目的是为了解决现有轻质烧蚀复合材料抗氧化耐烧蚀性较差的技术问题。本发明的一种陶瓷微球改性碳纤维预制体增强硅氧碳‑酚醛复合材料由陶瓷微球改性碳纤维预制体和填充在其中的硅氧碳凝胶和酚醛气凝胶组成。制备方法:步骤一、设计制备陶瓷微球改性碳纤维预制体;步骤二、配置硅氧碳溶胶;步骤三、真空浸渍硅氧碳溶胶及固化干燥;步骤四、配置酚醛溶胶;步骤五、真空倒入浸渍酚醛溶胶及固化;步骤六、溶剂替换及干燥。本发明的复合材料宏微观结构可控,密度在0.27~0.90g/cm3范围内可调,机械性能和耐热冲击性能好,热稳定性和耐烧蚀性优异。
-
-
-
-
-
-
-
-
-