-
公开(公告)号:CN118820469A
公开(公告)日:2024-10-22
申请号:CN202410845741.3
申请日:2024-06-27
Applicant: 哈尔滨工业大学 , 上海浦东发展银行股份有限公司
IPC: G06F16/35 , G06F40/247
Abstract: 本发明提出一种数据分类分级方法,属于数据分类分级技术领域。包括:步骤一、用户向服务器上传待分类数据,并选择不提供具体数据的字段;步骤二、服得到数据字段和内容,当数据字段不含模板数据时执行步骤三,否则执行步骤四;步骤三、利用识别模型对数据进行字段扫描,若输出的结果与模板中某一数据唯一对应,则根据模板中的对应关系,确定字段等级,否则认为字段不属于模板范围内,执行步骤四;步骤四、利用识别模型对数据进行字段扫描,根据输出结果与模板中数据进行匹配形成正则规则数组,正则规则数组表征匹配结果;步骤五、执行匹配流程,得到分类等级;本发明提出了权重匹配函数。能够更加准确的对数据类型进行分类分级。
-
公开(公告)号:CN118446356A
公开(公告)日:2024-08-06
申请号:CN202410521136.0
申请日:2024-04-28
Applicant: 哈尔滨理工大学 , 哈尔滨工业大学 , 中数(深圳)时代科技有限公司
IPC: G06Q10/04 , H02J3/00 , G06Q50/06 , G06N3/0455 , G06N3/0499 , G06N3/048 , G06N3/049
Abstract: 本发明提出一种基于时空嵌入独立的多变量时间序列预测方法,属于多变量时间序列预测技术领域。获取多变量时间序列数据作为样本数据,构建基于时空嵌入独立的多变量时间序列预测模型,使用多变量时间序列数据训练预测模型,更新模型权重,将多变量时间序列的电力负荷数据输入至预测模型,输出预测结果。本发明显著地增加多变量时间序列预测的精度;显著地降低了模型的计算开销,同时可以解决了跨时间依赖建模和跨维度依赖建模之间相互耦合导致状态向量规模过大的问题和在多变量时间序列的各个变量没有明确相关关系时,显式跨维度依赖建模导致的过拟合问题。
-
公开(公告)号:CN117494209A
公开(公告)日:2024-02-02
申请号:CN202311546450.6
申请日:2023-11-20
Applicant: 哈尔滨工业大学 , 中数(深圳)时代科技有限公司
IPC: G06F21/62 , G06F21/64 , G06N3/0475 , G06N3/098 , G06N3/094
Abstract: 一种基于生成对抗网络的多模态推理攻击的防御方法、电子设备及存储介质,属于人工智能安全技术领域。为加强对联邦学习过程中推理攻击的特征数据安全性,本发明设置联邦学习框架基础为:各参与方在每轮联邦学习模型训练前向中央服务器声明本地训练数据的特征标签,用于联邦学习的特征对齐;构建成员推理攻击方法,采集参与方的训练数据,然后攻击方重构参与方的训练数据,将重构的数据,可搜集到的相关数据和参与方自身持有的数据作为训练数据集,用于训练多模态推理攻击模型;构建多模态推理攻击模型,包括样本数据为文本的文本推理攻击模型、样本数据为图像的图像推理攻击模型;针对构建的多模态推理攻击模型,构建多模态推理攻击的防御方法。
-
公开(公告)号:CN117318929A
公开(公告)日:2023-12-29
申请号:CN202311237702.7
申请日:2023-09-22
Applicant: 哈尔滨工业大学 , 中数(深圳)时代科技有限公司
Abstract: 本发明提出一种隐私保护的异构联邦框架下数据投毒攻击的防御方法,属于攻击防御技术领域。包括:S1.密钥生成中心KGC为中央服务器PS生成一对LHE的非对称密钥,并且PS本地只保存私钥,每个边缘节点持有一对由KGC生成的非对称密钥,PS随机初始化全局模型的参数,发送给所有边缘节点集合,解密得到全局模型的参数进行本地训练;S2.PS组织所有边缘节点进行局部训练,通过聚类将所有边缘节点划分为多个集群,组织集群内的安全训练并提交更新;S3.设置威胁度使PS单独聚合所有更新;S4.当PS单独聚合更新的威胁度越大时,聚合中的权重越低,将聚合后的模型分发给所有领导节点。解决隐私性泄露威胁和鲁棒性不足的问题。
-
-
-