一种不含氧石墨烯荧光量子点的制备方法

    公开(公告)号:CN103555326A

    公开(公告)日:2014-02-05

    申请号:CN201310488338.1

    申请日:2013-10-17

    Applicant: 厦门大学

    Abstract: 一种不含氧石墨烯荧光量子点的制备方法,涉及石墨烯。将石墨粉分散在四氢呋喃溶液中,在氮气保护条件下超声分散,在所得石墨粉四氢呋喃分散液中依次加入金属锂和萘,在所得混合溶液中加入卤代有机试剂或甲醇,反应后,将所得固体产物洗涤,干燥后得烷基化石墨烯或氢化石墨烯。将制得的烷基化石墨烯或氢化石墨烯分散在有机溶剂中,超声分散后,再转移到反应釜中反应,冷却至室温,得到不含氧石墨烯荧光量子点。具有高效、可控的特点。制备得到的石墨烯量子点在水及一般有机溶剂中具有良好的分散性、荧光上转换和下转换特性,可应用于传感器、生物标记材料和能源材料等领域。

    一种有机高分子纳米管的制备方法

    公开(公告)号:CN100453713C

    公开(公告)日:2009-01-21

    申请号:CN200710008599.3

    申请日:2007-02-09

    Applicant: 厦门大学

    Abstract: 一种有机高分子纳米管的制备方法,涉及一种有机高分子纳米管,尤其是涉及一种通过溶剂热法制备有机高分子纳米管的方法。提供一种通过在溶剂热条件下制备有机高分子纳米管的简易方法。按二硫醇与钠的摩尔比为1∶2~3将钠与无水乙醇反应,加入二硫醇在室温下反应得二硫醇钠盐的乙醇溶液;将全氯代苯并苊烯加入溶剂中,超声后与所制二硫醇钠盐的乙醇溶液混合于聚四氟乙烯内衬中,将内衬置于反应釜中恒温,最后在室温下冷却。全氯代苯并苊烯的氯原子与二硫醇钠盐按摩尔比为2~3∶1,溶液与二硫醇钠盐的乙醇溶液按体积比为1∶16~32。取下层红色沉淀依次用甲苯,水和乙醇反复清洗至少1次,即得到最后目标产物。

    用硫化钠与全氯代苯并苊烯制备有机高分子纳米管的方法

    公开(公告)号:CN101054443A

    公开(公告)日:2007-10-17

    申请号:CN200710008831.3

    申请日:2007-04-13

    Applicant: 厦门大学

    Abstract: 用硫化钠与全氯代苯并苊烯制备有机高分子纳米管的方法,涉及一种有机高分子纳米管。提供一种通过在溶剂热条件下用硫化钠与全氯代苯并苊烯制备有机高分子纳米管的简易方法。将九水合硫化钠溶解于无水乙醇中得溶液A,将全氯代苯并苊烯加入溶剂中得混合物B,对混合物B超声,按九水合硫化钠的硫原子与全氯代苯并苊烯的氯原子的摩尔比,九水合硫化钠的硫原子∶全氯代苯并苊烯的氯原子=1∶2~3,按体积比溶剂∶无水乙醇=1∶16~32,溶剂选自甲苯,环己烷或四氢呋喃中的一种;将溶液A和B加入容器中超声,将容器置于反应釜中加热,恒温至少1h后冷却得混合物C;取混合物C的下层红色沉淀,再用甲苯、水和乙醇反复清洗至少1遍。

    一种富勒烯及氢化富勒烯的制备方法

    公开(公告)号:CN115947338B

    公开(公告)日:2024-06-04

    申请号:CN202310164895.1

    申请日:2023-02-24

    Applicant: 厦门大学

    Abstract: 本发明公开了一种富勒烯及氢化富勒烯的制备方法,涉及纳米材料制备技术领域。本发明通过向石墨棒中添加氢化物,将氢元素引进反应环境中,可利用现有的富勒烯合成的反应装置,不必改变富勒烯合成的反应装置和条件,即可得到含有富勒烯及氢化富勒烯的目标产物。经过优化,加入氢化物后碳灰提取物中的氢化富勒烯,相比于相同装置、相同反应条件、不加入氢化物的实验碳灰提取物中的氢化富勒烯与富勒烯衍生物含量有非常显著的提升,具体反映在色谱‑质谱联用分析的结果中。

    一种富勒烯及氢化富勒烯的制备方法

    公开(公告)号:CN115947338A

    公开(公告)日:2023-04-11

    申请号:CN202310164895.1

    申请日:2023-02-24

    Applicant: 厦门大学

    Abstract: 本发明公开了一种富勒烯及氢化富勒烯的制备方法,涉及纳米材料制备技术领域。本发明通过向石墨棒中添加氢化物,将氢元素引进反应环境中,可利用现有的富勒烯合成的反应装置,不必改变富勒烯合成的反应装置和条件,即可得到含有富勒烯及氢化富勒烯的目标产物。经过优化,加入氢化物后碳灰提取物中的氢化富勒烯,相比于相同装置、相同反应条件、不加入氢化物的实验碳灰提取物中的氢化富勒烯与富勒烯衍生物含量有非常显著的提升,具体反映在色谱‑质谱联用分析的结果中。

    一种溶液相制备石墨相氮化碳纳米片的方法

    公开(公告)号:CN104891460B

    公开(公告)日:2017-04-19

    申请号:CN201510288723.0

    申请日:2015-05-29

    Applicant: 厦门大学

    Abstract: 一种溶液相制备石墨相氮化碳纳米片的方法,属于纳米材料制备技术领域。将二氰二胺置于带盖陶瓷坩埚中进行煅烧,得到g‑C3N4聚合物材料;将g‑C3N4聚合物材料加入碱金属锂或钠的四氢呋喃溶液中,超声分散,并加入卤代有机试剂,反应所得固体产物依次用甲苯、乙醇和水进行洗涤,即得到g‑C3N4纳米片。具有原料廉价、工艺简单、制备效率高等优点,所得g‑C3N4纳米片比表面积显著增大,在有机相和水相中分散性好,具有良好的光催化性能。

    一种不含氧石墨烯荧光量子点的制备方法

    公开(公告)号:CN103555326B

    公开(公告)日:2015-09-23

    申请号:CN201310488338.1

    申请日:2013-10-17

    Applicant: 厦门大学

    Abstract: 一种不含氧石墨烯荧光量子点的制备方法,涉及石墨烯。将石墨粉分散在四氢呋喃溶液中,在氮气保护条件下超声分散,在所得石墨粉四氢呋喃分散液中依次加入金属锂和萘,在所得混合溶液中加入卤代有机试剂或甲醇,反应后,将所得固体产物洗涤,干燥后得烷基化石墨烯或氢化石墨烯。将制得的烷基化石墨烯或氢化石墨烯分散在有机溶剂中,超声分散后,再转移到反应釜中反应,冷却至室温,得到不含氧石墨烯荧光量子点。具有高效、可控的特点。制备得到的石墨烯量子点在水及一般有机溶剂中具有良好的分散性、荧光上转换和下转换特性,可应用于传感器、生物标记材料和能源材料等领域。

    一种石墨烯荧光纳米材料的制备方法

    公开(公告)号:CN104229775A

    公开(公告)日:2014-12-24

    申请号:CN201310248250.2

    申请日:2013-06-21

    Applicant: 厦门大学

    Abstract: 一种石墨烯荧光纳米材料的制备方法,涉及石墨烯。1)将石墨粉加入四氢呋喃溶液中分散;2)在步骤1)所得石墨粉四氢呋喃分散液中依次加入碱金属和萘,搅拌;3)在步骤2)所得的混合溶液中加入卤代有机试剂反应;4)将步骤3)所得的固体产物洗涤,干燥;5)以步骤4)所得产物为原料,重复步骤1)~4),得产物。反应的完全程度和均匀性好,制备的效率高。可通过使用含不同官能团的烷基来修饰石墨烯,获得水溶性或者油溶性的石墨烯荧光纳米材料来满足不同的应用需求。可实现石墨烯功能化程度的有效控制,实现石墨烯能隙的有效调控。制备得到的产物具有较大的荧光发光效率。所有操作均在室温下完成,制备工艺能耗低。

    一种磁功能化石墨烯复合材料的制备方法

    公开(公告)号:CN102583336B

    公开(公告)日:2014-09-03

    申请号:CN201210018658.6

    申请日:2012-01-20

    Applicant: 厦门大学

    Abstract: 一种磁功能化石墨烯复合材料的制备方法,涉及一种石墨烯复合材料的制备。提供一种方法简单、原料易得、易于工业化生产,制备得到的磁功能化石墨烯复合材料具有超顺磁特性和较高的饱和磁化强度,石墨烯载体导电性好,负载的四氧化三铁纳米颗粒分布均匀,颗粒小,结晶度好的磁功能化石墨烯复合材料的制备方法。将乙二胺和水配成混合溶剂,再将氧化石墨和乙酰丙酮合铁超声分散于混合溶剂中,得到氧化石墨和乙酰丙酮合铁的乙二胺/水分散液;将所得的氧化石墨和乙酰丙酮合铁的乙二胺/水分散液转移至内衬聚四氟乙烯的反应釜中反应,得固体产物;将所得的固体产物洗涤,再用磁铁收集产物,烘干得到磁功能化的石墨烯复合材料。

    一种高分子微球的合成方法

    公开(公告)号:CN100412098C

    公开(公告)日:2008-08-20

    申请号:CN200710008597.4

    申请日:2007-02-09

    Applicant: 厦门大学

    Abstract: 一种高分子微球的合成方法,涉及一种高分子微球。提供一种通过水热法合成高分子微球的简易方法。将钠与无水乙醇反应后加入二硫醇反应得二硫醇钠盐的乙醇溶液;将全氯代碳簇化合物的甲苯溶液与二硫醇钠盐的乙醇溶液混合于聚四氟乙烯釜中,置于反应釜中恒温,冷却;将反应后的体系进行离心,所得沉淀依次用甲苯,乙醇和水分别反复清洗至少1次,即得到最后目标产物。不需要添加任何稳定剂,通过体系自身即可形成高分子微球。分散相为均相且能与水和乙醇互溶,后处理简单。能制备径分布较窄的高分子微球粒。制得的高分子微球表面留有活性基团-氯和巯基能进一步修饰,装置简单,可操作性强,条件温和,反应过程无污染,效率高。

Patent Agency Ranking