-
公开(公告)号:CN118051878A
公开(公告)日:2024-05-17
申请号:CN202410452556.8
申请日:2024-04-16
Applicant: 南京气象科技创新研究院 , 南京信息工程大学
Abstract: 本发明公开了基于多模态融合改进深度学习的极端降水次季节预报方法,包括:对多种气象要素预报数据及预报目标区域的降水观测数据进行预处理;对影响极端降水发生的多模态特征进行自适应标识编码,并生成对应特征向量,形成无量纲化的多模态预报因子库;构建深度残差卷积神经网络优化模型,并分别利用训练集和验证集对模型进行训练和验证优化;采用训练好的模型进行目标区域的极端降水次季节预报。本发明采用了多气象要素因子、多模态融合与改进损失函数的深度学习神经网络模型,对极端降水预报进行了针对性优化,有效把握极端降水的时空分布特征,提高了极端降水的次季节预报能力,具有极强的应用价值。
-
公开(公告)号:CN118366046A
公开(公告)日:2024-07-19
申请号:CN202410799661.9
申请日:2024-06-20
Applicant: 南京信息工程大学
IPC: G06V20/10 , G06V10/44 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种基于深度学习并结合地形的风场降尺度方法,包括:(1)采集地面高程数据、低分辨率数值模式预报数据、高分辨率观测数据,并对数据进行预处理,最后构成降尺度数据集;(2)搭建基于矢量的神经网络深度学习降尺度模型;(3)基于降尺度数据集对基于矢量的神经网络深度学习降尺度模型进行训练;(4)基于实时低分辨率数值模式预报数据以及高分辨率地面高程数据,通过训练好的模型生成高分辨率降尺度数据。本发明能够实现经纬度分辨率从0.25°×0.25°到0.1°×0.1°的降尺度预测,提高了网络拟合效果,并可以综合把握矢量的方向和大小,产生更具有应用价值、准确率更高的结果。
-
公开(公告)号:CN118050729B
公开(公告)日:2024-07-09
申请号:CN202410447311.6
申请日:2024-04-15
Applicant: 南京信息工程大学
IPC: G01S13/95 , G06N3/0455 , G06N3/0464 , G06N3/0475 , G06N3/082 , G01S7/41 , G01S7/40
Abstract: 本发明公开了一种基于改进U‑Net的雷达回波时间降尺度订正方法,包括以下步骤:(1)收集发布的CMA‑SH数值模式预报数据,并进行初步的预报因子筛选和预处理;(2)搭建基于改进U‑Net的深度学习模型即传统U‑Net基础上增加基于对抗生成网络的TSR‑GAN时间降尺度模块,并定义新的阈值法评估指标,以此为基础更改适用于雷达回波预报订正问题的损失函数;(3)基于步骤(2)雷达回波数据集与改进U‑Net模型进行训练,获得订正后高分辨率的雷达回波预报产品;本发明通过降尺度得到分钟级预报,提高了对短临系统的预报能力。
-
公开(公告)号:CN118033590B
公开(公告)日:2024-06-28
申请号:CN202410437687.9
申请日:2024-04-12
Applicant: 南京信息工程大学
Abstract: 本发明公开了一种基于改进VIT神经网络的短临降水预报方法,包括以下步骤:(1)采集气象雷达回波资料、风廓线雷达资料,并进行质量控制和特征提取;(2)搭建融合了深层链接和自适应最优权重分配的VIT神经网络模型;(3)构建训练集后对模型进行训练,并引入基于均方根误差和对流面积变化率的损失函数;(4)基于训练好的模型预报未来的雷达回波,并转换得到降水预报场;(5)基于频率匹配法和消空法对降水预报场进行后处理,得到最终的短临降水预报产品;本发明能有效改善小量级降水的空报和大量级降水的漏报,进而进一步提高降水预报技巧。
-
公开(公告)号:CN117237677B
公开(公告)日:2024-03-26
申请号:CN202311518546.1
申请日:2023-11-15
Applicant: 南京信息工程大学 , 无锡学院 , 南京气象科技创新研究院 , 中国人民解放军国防科技大学
IPC: G06V10/74 , G01W1/10 , G06N3/0464 , G06N3/0475 , G06N3/094 , G06N3/0455 , G06T7/62 , G06T7/60 , G06T7/73
Abstract: 本发明公开了一种基于深度学习的强降水空间整体相似度的降水预报订正方法,包括以下步骤:(1)利用YOLOv5对降水属性进行识别;(2)建立基于GAN的降水预报订正模型;(3)建立基于GAN且融合降水空间特征的强降水订正模型O‑GAN;(4)将测试期的数值模式预报数据代入模型O‑GAN,生成后处理之后的降水预报;本发明有效提高了传统仅优化逐点误差模型的订正技巧;实现了从降水图片到降水雨团空间属性的“端到端”输出,提高客观识别效率;避免了传统逐点订正模型可能出现的预报模糊化问题,同时能够有效捕捉强降水特征,提高降水预报准确率。
-
公开(公告)号:CN116467946B
公开(公告)日:2023-10-27
申请号:CN202310437043.5
申请日:2023-04-21
Applicant: 南京信息工程大学
IPC: G06F30/27 , G06F18/15 , G06F18/214 , G06F18/213 , G06N3/0464 , G06N3/08 , G01W1/10 , G06F111/10
Abstract: 本发明公开了一种基于深度学习的模式预报产品降尺度方法,包括:采集地面高程数据、低分辨率数值模式预报数据、高分辨率观测数据,并对数据进行预处理,构成降尺度数据集;搭建基于改进卷积神经网络的深度学习模型;基于所述训练集和模型进行训练;基于实时低分辨率数值模式预报数据、地面高程数据生成高分辨率降尺度产品。本发明使用卷积处理地面高程数据,保留其高分辨率信息的同时控制了其在网络特征提取和降尺度部分的比例,提高了结果的准确率;结合了非局地注意力机制与Res2net模块,提高了数据利用效率和网络拟合能力;采用最近邻插值与卷积运算配合进行上采样,规避了转置卷积带来的棋盘效应,提高了模型的准确率和实用价值。
-
公开(公告)号:CN116467946A
公开(公告)日:2023-07-21
申请号:CN202310437043.5
申请日:2023-04-21
Applicant: 南京信息工程大学
IPC: G06F30/27 , G06F18/15 , G06F18/214 , G06F18/213 , G06N3/0464 , G06N3/08 , G01W1/10 , G06F111/10
Abstract: 本发明公开了一种基于深度学习的模式预报产品降尺度方法,包括:采集地面高程数据、低分辨率数值模式预报数据、高分辨率观测数据,并对数据进行预处理,构成降尺度数据集;搭建基于改进卷积神经网络的深度学习模型;基于所述训练集和模型进行训练;基于实时低分辨率数值模式预报数据、地面高程数据生成高分辨率降尺度产品。本发明使用卷积处理地面高程数据,保留其高分辨率信息的同时控制了其在网络特征提取和降尺度部分的比例,提高了结果的准确率;结合了非局地注意力机制与Res2net模块,提高了数据利用效率和网络拟合能力;采用最近邻插值与卷积运算配合进行上采样,规避了转置卷积带来的棋盘效应,提高了模型的准确率和实用价值。
-
公开(公告)号:CN114881381B
公开(公告)日:2022-10-21
申请号:CN202210815291.4
申请日:2022-07-11
Applicant: 南京信息工程大学
Abstract: 本发明公开了基于改进卷积神经网络的城市积水水位预测方法及系统,属于城市内涝水位预测技术领域,所述方法包括:获取当前积水水位、城市地面高程数据、未来预设时间内的降水预报数据;基于未来预设时间内的降水预报数据识别出目标站点周围的雨带,提取雨带的对象属性;将降水预报数据、城市地面高程数据、雨带的对象属性进行预处理后组成输入变量;将输入变量输入到预训练好的基于改进卷积神经网络的深度学习模型中,得到所述未来预设时间内目标站点的积水变率,结合当前积水水位得到所述未来预设时间内的积水水位;所述模型经过训练后具有高度非线性和强鲁棒性,本发明技术方案相较现有技术具有更长的预测时效,有极强的应用价值。
-
公开(公告)号:CN114818984B
公开(公告)日:2022-09-23
申请号:CN202210605679.1
申请日:2022-05-31
Applicant: 南京信息工程大学
Abstract: 本发明公开了一种基于人工智能的精细化城市积水水位拟合方法,包括:1、构建无量纲化的水文特征数据库;2、基于图神经网络方法展开聚类分析;3、划分城市积水水位子区域;4、基于神经网络逐区构建个性化城市水文概念模型;5、根据积水监测站积水水位监测信息,结合经度信息、纬度信息、时间信息、地面高程信息,反衍各子区域任意位置积水水位。本发明模型适用性较强,模型融合了积水站点的地理信息和时间信息,有效提取积水水位的时空分布特征,模型的拟合能力较强;能提供全区域任意位置的积水水位产品,实现了去网格化,且能基于历史同期数据库实现历史水位的回报,对预防城市积涝和城市合理规划具有重要作用。
-
公开(公告)号:CN114818984A
公开(公告)日:2022-07-29
申请号:CN202210605679.1
申请日:2022-05-31
Applicant: 南京信息工程大学
Abstract: 本发明公开了一种基于人工智能的精细化城市积水水位拟合方法,包括:1、构建无量纲化的水文特征数据库;2、基于图神经网络方法展开聚类分析;3、划分城市积水水位子区域;4、基于神经网络逐区构建个性化城市水文概念模型;5、根据积水监测站积水水位监测信息,结合经度信息、纬度信息、时间信息、地面高程信息,反衍各子区域任意位置积水水位。本发明模型适用性较强,模型融合了积水站点的地理信息和时间信息,有效提取积水水位的时空分布特征,模型的拟合能力较强;能提供全区域任意位置的积水水位产品,实现了去网格化,且能基于历史同期数据库实现历史水位的回报,对预防城市积涝和城市合理规划具有重要作用。
-
-
-
-
-
-
-
-
-