-
公开(公告)号:CN116612439A
公开(公告)日:2023-08-18
申请号:CN202310891061.0
申请日:2023-07-20
Applicant: 华侨大学
IPC: G06V20/52 , G06V40/10 , G06V10/774 , G06V10/82 , G06N3/045 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种模态域适应性和特征鉴别性平衡方法及行人再辨识方法,其中的模态域适应性和特征鉴别性平衡方法用于红外光与可见光跨模态行人再辨识。本发明在模态域适应性优化和特征鉴别性优化之间设置一个注意力模块,用模态域适应性优化函数监督注意力模块的掩码学习,并用特征鉴别性优化函数监督注意力模块的反掩码学习,从而借助注意力机制自动平衡模态域适应性和特征鉴别性之间的矛盾,改善特征学习效果,提升红外光与可见光跨模态行人再辨识准确性。本发明可以应用于智能视频监控系统中的行人身份识别、行人轨迹分析等,具有广泛的应用价值。
-
公开(公告)号:CN113486723A
公开(公告)日:2021-10-08
申请号:CN202110649660.2
申请日:2021-06-10
Applicant: 华侨大学
Abstract: 本发明涉及一种高效车辆再辨识方法,包括:构造四个不同方向性深度网络,并在它们的训练过程中使用困难样本进行协调调度,增强四个方向性深度所学车辆特征之间的互补性;利用知识蒸馏方法,将四个不同方向性深度网络作为教师网络,用于指导一个简单的学生网络训练,再将学生网络用于车辆再辨识,从而降低车辆再辨识的计算量。
-
公开(公告)号:CN108875906A
公开(公告)日:2018-11-23
申请号:CN201810359791.5
申请日:2018-04-20
Applicant: 华侨大学
CPC classification number: G06N3/0454 , G06N3/08
Abstract: 本发明涉及一种多尺度逐步累加的卷积神经网络学习方法,可广泛应用于机器视觉和人工智能领域,例如目标检测、目标分类、目标识别等。首先,本发明采用均值池化操作对输入图像构建多尺度图像金字塔;然后,将各个不同尺度的图像逐步送入卷积神经网络,让卷积神经网络随着网络深度的逐步深入,能够在多种不同尺度的图像上进行学习并进行特征逐步累加,从提高了而卷积神经网络的特征学习能力。
-
-