-
公开(公告)号:CN112774665B
公开(公告)日:2022-02-15
申请号:CN202110129828.7
申请日:2021-01-29
Applicant: 华中科技大学
Abstract: 本发明属于莫来石型催化剂领域,具体涉及一种提高氨气选择性的莫来石型催化剂及制备方法和应用。本发明制备方法包括以下步骤:(1)测定莫来石的吸水率,按照吸水率以及负载量配制改性剂溶液,将莫来石浸渍在改性剂溶液中获得中间体;(2)将中间体干燥后焙烧,获得莫来石型催化剂,所述改性剂为Al2O3、TiO2、ZrO2和Nb2O5中的一种。本发明结合了密度泛函的理论计算方法,表明莫来石上氨气选择性氧化中生成N2的主反应,以及生成N2O副反应的势垒差别,并通过改性剂提高莫来石对N的电子对吸引进而提高NH的吸附强度和数量以降低生成N2主反应势垒,提高莫来石的N2选择性,能够在180℃前达到90%的转化率并具备大于70%的N2选择性。
-
公开(公告)号:CN113540375A
公开(公告)日:2021-10-22
申请号:CN202110625785.1
申请日:2021-06-04
Applicant: 华中科技大学
IPC: H01L51/52 , C23C16/30 , C23C16/40 , C23C16/455
Abstract: 本发明涉及一种干涉滤光膜及其制备方法和发光装置,包括如下步骤:在基材上依次形成层叠且交替的高折射率材料薄膜和低折射率材料薄膜;其中,基材上的最内层薄膜为第一层高折射率材料薄膜,第一层高折射率材料薄膜采用热原子层渗透工艺沉积形成,第一层高折射率材料薄膜的沉积步骤包括依次进行的使前驱体渗透至基材的前驱体渗透阶段及沉积形成第一层高折射率材料薄膜的原子层沉积阶段;除第一层薄膜之外,其他各薄膜的沉积工艺独立地选自原子层沉积工艺或PEALD工艺;各高折射率材料薄膜和各低折射率材料薄膜的沉积温度均不大于110℃。本发明制备方法能够有效地避免制膜工艺导致发光器件失效的问题,且制得的干涉滤光膜具有较好的滤波和增透性能。
-
公开(公告)号:CN112751046A
公开(公告)日:2021-05-04
申请号:CN202011618463.6
申请日:2020-12-31
Applicant: 华中科技大学
Abstract: 本发明属于催化剂领域,具体涉及一种金属单原子负载型碳基电催化剂及其制备方法和应用。本发明制备方法包括:将金属活性前驱放入反应器上游,将氮掺杂碳载体或氮掺杂碳载体前驱放入反应器下游,通入载气使载气从反应器上游移动至反应器下游,高温煅烧后得到碳基电催化剂,所述金属活性前驱为金属氧化物粉末和卤化盐粉末的混合物。本发明利用廉价的金属氧化物和卤化盐作为金属前驱原料,高温熔融盐与氧化物反应形成熔点较低的中间产物,有效提高金属氧化物表面金属物质的发射效率,并以单原子形式均匀的铆钉在氮掺杂碳的表面,制备工艺简单有效,绿色环保,对于促进锌空电池和燃料电池的应用具有重要意义。
-
公开(公告)号:CN110718645B
公开(公告)日:2021-01-05
申请号:CN201910906165.8
申请日:2019-09-24
Applicant: 华中科技大学
Abstract: 本发明属于发光二极管制备领域,并具体公开了一种钙钛矿量子点发光二极管的制备方法及产品。所述方法包括:将洁净的ITO玻璃表面进行活化处理;将活化处理后的ITO玻璃表面依次沉积一层ZnO薄膜和Al2O3薄膜;在Al2O3薄膜表面旋涂量子点溶液,以获取量子点薄膜;在量子点薄膜表面沉积一层Al2O3薄膜;在Al2O3薄膜表面依次制备一层TPD空穴传输层、MoO3空穴注入层和电极铝。本发明产品采用上述制备方法制备得到。本发明制备方法工艺简单便捷,所制备得到的产品具有较高的载流子注入、传输能力和稳定性,可以保护QLED器件不受破坏,无机物的引入使器件的稳定性得到明显的提高,从而改善器件的发光性能。
-
公开(公告)号:CN109576673B
公开(公告)日:2020-02-14
申请号:CN201811502555.0
申请日:2018-12-10
Applicant: 华中科技大学
IPC: C23C16/455 , B82Y40/00
Abstract: 本发明属于真空镀膜相关技术领域,并公开了一种用于微纳米颗粒充分分散包覆的超声流化原子层沉积装置,其包括载气及反应前驱体供给组件、反应腔体和超声振动组件,其中载气及反应前驱体供给组件为原子层沉积反应提供全区体反应物、载气和吹扫过程中需要的惰性气体;反应腔体作为原子层沉积反应的发生区域,前驱体进入反应腔体部分在基底表面沉积成膜;超声振动组件用于产生超声振动并传递给反应腔体部分,破解微纳米颗粒之间的软团聚,使颗粒在原子层沉积反应过程中处于分散状态,实现薄膜在单个颗粒表面的生长。通过本发明,能够克服大批量粉体颗粒仅在气流作用下无法完全流化分散的缺点,使纳米颗粒在气流和超声振动作用下获得更充分的分散。
-
公开(公告)号:CN110783281A
公开(公告)日:2020-02-11
申请号:CN201911003784.2
申请日:2019-10-22
Applicant: 华中科技大学
IPC: H01L23/29 , H01L23/31 , H01L23/373 , H01L21/56
Abstract: 本发明属于电子器件封装领域,并公开了一种可拉伸电子器件的薄膜封装组件及其制备方法。该组件自下而上包括待封装电子器件、阻隔层、光热传导层和疏水防护层,其中,疏水防护层用于阻隔外界的水汽与光热传导层直接接触并进行腐蚀,光热传导层用于增强器件整体透光和散热能力,阻隔层用于进一步阻隔空气中的水和氧气,避免水和氧气进入待封装电子器件,其中,阻隔层包括有机涂层和无机-有机复合层;光热传导层依次包括两个封装层和设置在两个封装层之间的金属散热层。本申请还相应公开了上述封装组件的制备方法。通过本发明所获取的封装组件具备良好的水汽阻隔能力,且兼顾良好的透光性、传热性和拉伸性能,可实现对可拉伸电子器件的长效保护。
-
公开(公告)号:CN110144215A
公开(公告)日:2019-08-20
申请号:CN201910355689.2
申请日:2019-04-29
Applicant: 华中科技大学
Abstract: 本发明属于纳米晶制备相关技术领域,并公开了一种基于原子层沉积的纳米晶表面定向钝化方法,包括:采用热注入法合成纳米晶胶体;采用水解法将纳米晶颗粒均匀嵌入二氧化硅微球上;采用原子层沉积技术,在均匀嵌入有纳米晶颗粒的二氧化硅微球表面上继续沉积金属氧化物薄膜,由此完成整体的表面定向钝化处理过程。本发明还公开了相应的产品。通过本发明,能够有效解决量子点易受水氧侵蚀的问题,具有制备工艺简单,制备成本低等优点。
-
公开(公告)号:CN108715998B
公开(公告)日:2019-08-13
申请号:CN201810614134.0
申请日:2018-06-14
Applicant: 华中科技大学
IPC: C23C16/455
Abstract: 本发明属于原子层沉积制备仪器相关领域,并公开了一种用于大批量微纳米颗粒包裹的原子层沉积装置,该装置包括颗粒容器和反应腔体,其中反应腔体的下端设置有进源口,进源口中密封设置有用于输入前驱体和载气的进气管;反应腔体的上端开设有腔门,颗粒容器可以自由放置于反应腔体中,或从中取出;颗粒容器下端设有进气孔,进气管通过进气孔进入颗粒容器的内腔。通过本发明,能够有效将气流内循环与外循环的方法相结合,显著增大颗粒间的碰撞及与气体分子的接触概率,提升反应速率和前驱体利用率,实现大批量微纳米颗粒的高质高效包覆。
-
公开(公告)号:CN110112313A
公开(公告)日:2019-08-09
申请号:CN201910413501.5
申请日:2019-05-17
Applicant: 华中科技大学
Abstract: 本发明属于薄膜封装技术领域,并公开了一种柔性器件的超薄复合封装薄膜结构及制备方法。所述封装薄膜结构包括基底、设于基底上的器件、封装于所述器件表面的第一无机隔离层以及设于该无机隔离层表面的第一复合阻隔层;第一复合阻隔层包括设于第一无机隔离层上的至少两层第一无机阻隔层以及设于相邻两层第一无机阻隔层之间的至少一层第一有机阻隔层。本发明还公开了相应结构的制备方法。本发明封装薄膜结构中存在不同无机结构之间和有机结构与无机结构之间相互掺杂、相互交联的界面特征,极大地改善了薄膜应力集中的缺点,隔离了无机层之间的缺陷,大幅度延长了水氧透过薄膜的时间和路径、提高薄膜阻隔水氧的能力,能够有效地保护柔性器件。
-
公开(公告)号:CN108754456A
公开(公告)日:2018-11-06
申请号:CN201810503730.1
申请日:2018-05-23
Applicant: 华中科技大学
IPC: C23C16/455 , C23C16/52
CPC classification number: C23C16/45548 , C23C16/45519 , C23C16/45568 , C23C16/52
Abstract: 本发明属于微纳制造相关设备领域,并公开了一种常压下曲面基底的原子层沉积薄膜制备设备,它包括喷头模块及对应配备的液压传动模块,其中该喷头模块用于对基底进行原子层沉积,具有空间隔离的作用,并且四周的气浮区可以帮助喷头在经过曲面时改变方向达到曲面沉积的作用;该液压传动模块通过转阀来实时获取喷头转动角度的信息,并通过改变进出油口的相对连接位置而使得喷头总体上升或者下降或者保持不动。通过本发明,能够可获得一种开放式、具有自调整功能的原子层沉积薄膜制备设备,其不仅可在常温常压下即可执行各类曲面沉积操作,而且喷头能够根据曲面曲率的不同而快速改变角度及升降运动,进而与现有设备相比可显著提高作业效率和适用性。
-
-
-
-
-
-
-
-
-