利用误差修正闭环回路消除齿隙误差的精密定位装置

    公开(公告)号:CN103699052B

    公开(公告)日:2016-08-03

    申请号:CN201210366940.3

    申请日:2012-09-28

    Abstract: 本发明属于测控技术领域,具体涉及一种利用误差修正闭环回路消除齿隙误差的精密定位装置,目的是提供一种能够完全消除齿隙影响的利用误差修正闭环回路消除齿隙误差的精密定位装置。它包括速率回路、线性位置回路组件和非线性位置回路组件;其中,线性位置回路组件与速率回路组成线性位置回路;非线性位置回路组件与线性位置回路连接,组成非线性位置回路。本发明采用由数字测速机、角度编码器、光栅尺及开关组成的三回路控制系统,对存在回程间隙的滚珠丝杠进行回程间隙补偿定位,在间隙0.05mm,螺距5mm条件下,定位精度达到0.001mm,定位稳定,重复性好。

    一种图像恒定亮度自动调整的电路

    公开(公告)号:CN104349034A

    公开(公告)日:2015-02-11

    申请号:CN201310315603.6

    申请日:2013-07-25

    Abstract: 本发明涉及图像亮度自动控制技术领域,具体公开了种图像恒定亮度自动调整的电路。该调整电路中,比较模块A的两个输入端分别接收设定灰度值信号和与比较模块A一个输入端相连接的位置反馈回路的输出信号,比较模块A的输出端直接与位置回路运算网络直接连接;比较模块B的两个输入端分别与位置回路运算网络和速率反馈回路的输出端相连,比较模块B的输出端与速率回路运算网络连接,且速率回路运算网络的输出端依次与数模转换器DAC和功率放大模块相连接,输出电机驱动控制信号。通过调整电路中两回路的反馈比例系数和超前滞后网络,使系统达到高动态跟随且不发生震荡。该调整方法稳定可靠,相机图像能够始终稳定在设定灰度值,响应速度快。

    由测角传感器和测长传感器构成的直线运动双反馈结构

    公开(公告)号:CN103697816A

    公开(公告)日:2014-04-02

    申请号:CN201210366905.1

    申请日:2012-09-28

    Abstract: 本发明属于测控技术领域,具体涉及一种由测角传感器和测长传感器构成的直线运动双反馈结构,目的是提供一种消除丝杠回程间隙的由测角传感器和测长传感器构成的直线运动双反馈结构。包括支架(2)、测角码盘(3)、联轴器(4)、基座(5)、丝杠(6)、主光栅尺、螺母(8)和副光栅(9)。本发明采用测角传感器和测长传感器组成的双反馈结构形式,消除了丝杠回程间隙的影响,能够避免由于齿隙的存在而使定位不可靠。在齿隙0.05mm,螺距5mm条件下,定位精度达到0.001mm,定位稳定,重复性好。

    一种双向应变场产生与加载装置

    公开(公告)号:CN108120420B

    公开(公告)日:2020-02-21

    申请号:CN201611090129.1

    申请日:2016-11-30

    Abstract: 本发明属于应变传感器校准技术领域,具体涉及一种双向应变场产生与加载装置。电机与丝杠连接,丝杠与下丝杠滑块和上丝杠滑块连接,下丝杠滑块和上丝杠滑块之间连接有下传力梁,上丝杠滑块上部连接有上传力梁,下丝杠滑块和上丝杠滑块两侧均与导轨连接,下传力梁的两端与外侧传力杆连接,上传力梁的两端与内侧传力杆连接,传力杠杆的两端通过圆柱传力轴分别与外侧传力杆和内侧传力杆连接,简支梁与传力杠杆连接。本发明能够对应变梁进行双向拉、压力加载,从而在应变梁同一侧等应变区域产生正、负应变场,实现对应变传感器单次安装后即可完成正负量程的校准。

    一种多特征点位置姿态冗余解算方法

    公开(公告)号:CN104424382B

    公开(公告)日:2017-09-29

    申请号:CN201310367522.0

    申请日:2013-08-21

    Abstract: 本发明属于物体位置姿态测量技术领域,具体涉及一种多特征点位置姿态冗余解算方法。方法以特征点在视觉测量系统中的三维坐标为输入条件,获取数据后通过计算特征点到空间虚拟点的距离寻找匹配点对,若所有特征点均能找到匹配点对,则直接进行去重心化操作;若无法找到匹配点对,则该点被自动舍弃,记录匹配点对个数,动态调整后续算法数据入口大小,由剩余点解算该时刻的姿态位置信息;完成匹配后,通过去重心化实现平移信息和旋转信息的分离,单独解算旋转矩阵。本发明解决了物体空间位置姿态测量的六自由度解算问题,提高算法精度的同时使算法保持较高的实时性能。

    一种不规则外形物体空间姿态动态测量方法

    公开(公告)号:CN104422425B

    公开(公告)日:2017-02-22

    申请号:CN201310377247.0

    申请日:2013-08-27

    Abstract: 本发明涉及运动物体空间姿态动态测量技术领域,具体公开了一种不规则外形物体空间姿态动态测量方法。该方法包括:1)在被测物上设置光学靶标,并利用激光跟踪仪对所有光学靶标进行全局校准;2)利用相机测量系统标定技术对测量系统进行标定,并控制左右两相机同步采集测量图像,并通过图像处理技术提取光学靶标的图像坐标;3)利用步骤1、2所获得的光学靶标在被测物坐标系下的三维坐标和在测量坐标系下的三维坐标,获得旋转矩阵,获得被测物的三维空间姿态角。该测量方法,可以测量非轴对称的不规则外形的空间物体的瞬时空间三维姿态角;在测量范围2m×2m×2m的空间中,测量频率1000Hz的测量条件下,测量精度可达到空间角合成均方根误差小于0.05°。

    一种基于定向反射球的三维标定装置

    公开(公告)号:CN105651306A

    公开(公告)日:2016-06-08

    申请号:CN201410640565.6

    申请日:2014-11-13

    Abstract: 本发明属于计量测试技术领域,具体涉及一种基于定向反射球的三维标定装置,目的是解决现有技术或操作繁琐、或标定信息少的问题。其特征在于:它包括基础框架(1)、靶位支撑结构(2)、反射球靶位(3)和定向反射球(4);其中,基础框架(1)为正方体框架或六面体框架;靶位支撑结构(2)为杆状,安装在基础框架(1)的顶部和前侧面和左侧面上;反射球靶位(3)为金属制杆状,安装在加装靶位支撑结构(2)后的基础框架(1)的顶部、前侧面和左侧面的节点上;定向反射球(4)表面为定向反光材料,安装在反射球靶位(3)上。本发明质量轻、结构稳定性好、尺寸大,且对各点位安装位置无严格要求,易于实现。

    用于视觉精密测量的轴孔基准现场快速引出工装及方法

    公开(公告)号:CN105627918A

    公开(公告)日:2016-06-01

    申请号:CN201410635996.3

    申请日:2014-11-05

    Abstract: 本发明属于几何量精密测量技术领域,具体涉及一种用于视觉精密测量的轴孔基准现场快速引出工装及方法,目的提供一种引出工装及方法。该工装包括轴基准引出工装和孔基准引出工装。该方法包括建立工装坐标系、标注定向反射球球心在工装坐标系下的三维坐标值、安装轴孔基准现场快速引出工装、测量和数据处理五个步骤。本发明的引出工装和基于该工装的方法能够有效解决应用视觉精密测量系统测量以轴或孔的轴线与基准平面的交点作为基准点定义工件坐标系的大型机械部件时,测量坐标系与工件坐标系的现场快速建立问题。

    一种标定摄影测量系统动态测量误差的装置及使用方法

    公开(公告)号:CN104567919A

    公开(公告)日:2015-04-29

    申请号:CN201310474394.X

    申请日:2013-10-12

    CPC classification number: G01C25/00

    Abstract: 本发明属于摄影测量系统动态测量误差标定技术领域,具体涉及一种标定摄影测量系统动态测量误差的装置及使用方法,目的是提供一种能够实现摄影测量系统动态测量误差标定的装置及其使用方法。所属的装置包括转台系统、标定模拟件(4)、同步控制器、坐标转换标志球(3)和立体靶标球。本发明采用由转台系统、标定模拟件4、同步控制器、坐标转换标志球3和立体靶标球组成的标定装置,实现了对待标定摄影测量系统的动态测量误差标定,填补了动态误差标定装置和方法的空白,并具有高的测量精度。实验结果显示,该标定方法准确可靠,实验数据良好,系统不确定度U=5″,k=2。

Patent Agency Ranking