-
公开(公告)号:CN117079060B
公开(公告)日:2024-03-12
申请号:CN202311325300.2
申请日:2023-10-13
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06V10/764 , G06V10/774 , G06V10/25 , G06V20/40 , G06V10/82 , G06N3/0442 , G06N3/0464 , G06N3/045
Abstract: 一种基于光合信号的叶片智能分类方法和系统,其方法包含:叶片光合信号提取、叶片光合信号分类。叶片光合信号提取通过叶片检测模型提取出视频中的叶片,使用分割算法对提取出的叶片进行分割,从而分割出叶片区块,然后以叶片区块内的像素均值记为当前帧的光合信号值,视频的多帧连续光合信号值即组成此叶片的光合信号。叶片光合信号分类使用神经网络对采集到的叶片光合信号进行特征提取训练,来实现叶片的分类。本发明提出一种基于植物叶片的光合信号,确定其提取方法,并针对植物叶片的光合信号变化,采用深度学习训练的方式,提取出植物叶片与其光合信号变化的相关性,从而大大提高叶片分类的精度。
-
公开(公告)号:CN117314755B
公开(公告)日:2024-02-13
申请号:CN202311605122.9
申请日:2023-11-29
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06T3/4053 , G06T3/4046 , G06T5/60 , G06T5/70 , G06T7/00 , G06V20/70 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/0475 , G06N3/0895
Abstract: 本发明公开了一种基于跨模态图像生成的多视角植株生成方法和装置,属于农业方面的图像处理领域,包括:采集植株图像并标注文本信息;基于图像和文本对文本图像映射模型进行训练微调并冻结,得到图像和文本的内嵌向量;基于图像和文本的内嵌向量,构建基于扩散模型的包含文本图像先验模块和图像编码器模块的图像生成模型并训练;实际推理阶段根据基因型‑表型预测模型得到的目标植株表型数据,引导图像生成模型生成多视角小图,并输入图像超分辨模块得到高分辨率的目标植株图像。本发明采用扩散模型构建图像生成模型和图像超分辨模块,
-
公开(公告)号:CN116992919B
公开(公告)日:2023-12-19
申请号:CN202311269915.8
申请日:2023-09-28
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06N3/042 , G06N3/0464 , G06N3/0499 , G06N3/084 , G16B40/00 , G06F18/213 , G06F18/22
Abstract: 本发明公开了一种基于多组学的植物表型预测方法和装置,该方法基于图卷积神经网络,将多组学如基因组、转录组、代谢组的数据作为图节点,不同组学之间的关联程度作为图的边来构建每个植株的图结构数据,将构建的图结构数据输入图卷积神经网络中,提取节点特征,通过Transformer网络更新节点特征,节点特征拼接后输入全连接层,输出表型预测值,利用整个图结构融合多组学特征实现表型的预测。本发明创新性的利用图卷积神经网络结合Transformer网络实现基因到表型的预测,并利用多组学构建图结构融合多组学数据实现精准表型预测,在一定程度上解决只用单一组学表型预测不准的问题,
-
公开(公告)号:CN116797904A
公开(公告)日:2023-09-22
申请号:CN202310444502.2
申请日:2023-04-24
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06V10/82 , G06V10/774 , G06N3/08 , G06N3/0464 , G06V10/74 , G06V10/764 , G06N5/02
Abstract: 本发明公开一种图像识别不确定性知识蒸馏方法与系统,收集有标签训练图像样本;选定第一神经网络模型,使用训练图像样本进行训练,得到训练好的第一神经网络模型,输入训练样本图像得到第一神经网络模型中间层样本特征表达及输出的软标签信息;选定第二神经网络模型,对训练图像样本进行处理,得到中间层样本特征表达,与第一神经网络模型的中间层样本特征表达进行不确定性建模,得到第一损失函数;使用第一神经网络模型输出的软标签信息及训练图像样本,联合第一损失函数,更新第二神经网络模型的参数,得到训练好的第二神经网络模型,同时利用本发明第二神经网络模型对待处理图像进行图像识别处理,提高图像识别的准确度。
-
公开(公告)号:CN116994154A
公开(公告)日:2023-11-03
申请号:CN202311092395.8
申请日:2023-08-29
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
Abstract: 本发明涉及无人机应用技术领域,具体公开了一种基于无人机的大豆苗期特征获取方法及系统,所述方法包括向地图服务发送卫星图获取请求,获取大豆种植区的卫星图;对所述卫星图进行识别,确定区域分隔线,根据所述区域分隔线建立检测路径;将检测路径向无人机组合发送,实时获取无人机组合的运动参数,根据运动参数确定大豆苗期特征;其中,所述无人机组合在检测路径上运动时,实时获取种植区图像,对种植区图像进行识别,根据识别结果实时调节运动参数。本发明将数据识别过程内置于无人机,通过定位器获取无人机的运动参数即可快速判定期苗特征,此外,还可以通过参数差定位可能存在缺陷的点,处理的源数据仅为位置信息,识别效率较高。
-
公开(公告)号:CN116884481A
公开(公告)日:2023-10-13
申请号:CN202310697601.1
申请日:2023-06-13
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G16B20/30 , G06N3/0464 , G06N3/0895 , G16B20/00
Abstract: 一种基于图卷积神经网络与自监督重构学习的基因到表型预测方法和系统,该方法基于图卷积神经网络的方法,将每个品种的大豆作为图节点,大豆的基因序列为节点的特征,利用每个品种大豆之间的亲缘关系作为图的边,将构建的图输入图卷积神经网络与自监督重构网络中,更新节点特征,实现大豆基因到表型的预测。本发明创新性的利用图卷积神经网络实现基因到表型的预测,利用自监督学习降低基因维度,并将品种之间的亲缘关系作为先验关联不同品种指导基因到表型挖掘,提高表型预测的效果。
-
公开(公告)号:CN116597894A
公开(公告)日:2023-08-15
申请号:CN202310359159.1
申请日:2023-03-31
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
Abstract: 基于XGBoost特征选择与深度学习结合的大豆基因到表型预测方法,首先基于XGBoost方法进行特征选择挑选基因位点,根据XGBoost获得每个基因位点的重要性量度,根据重要性量度排序将重要的基因位点挑选出来,然后将挑选的基因位点进行自监督重构训练得到重构网络参数,最后对挑选的基因位点onehot编码,并利用重要性量度值对编码加权重,将加权重后的编码输入到修改后的重构网络中实现大豆基因到表型的预测。本发明利用XGBoost进行重要基因位点筛选,过滤掉大量冗余的基因位点,并利用生成网络学习基因位点的分布,对基因位点重构,重构网络的参数作为预训练参数指导基因预测表型的训练,提高表型预测的效率和效果。
-
公开(公告)号:CN117576455A
公开(公告)日:2024-02-20
申请号:CN202311525557.2
申请日:2023-11-15
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06V10/764 , G06V20/17 , G06V10/82 , G06T7/00 , G01S19/42
Abstract: 本发明涉及无人机应用技术领域,具体公开了一种大豆种植区目标检测方法及系统,所述方法包括根据检测高度和待检范围确定检测路径;将所述检测路径向无人机发送,并基于GPS服务实时获取无人机的位置信息;根据所述位置信息确定异常时刻,根据所述异常时刻读取采集图像;对所述采集图像进行识别,定位异常物体,输出异常报告;其中,所述无人机在运动过程中,对采集图像进行预识别,并根据预识别结果实时调节运动参数。本发明通过无人机对大豆进行预识别,通过对无人机进行位置检测,即可快速定位可能存在异常的采集图像,这一过程中,需要读取的采集图像的数量较少,传输压力极小,可以有效提高无人机的检测范围。
-
公开(公告)号:CN117314755A
公开(公告)日:2023-12-29
申请号:CN202311605122.9
申请日:2023-11-29
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06T3/40 , G06T5/00 , G06T7/00 , G06V20/70 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/0475 , G06N3/0895
Abstract: 本发明公开了一种基于跨模态图像生成的多视角植株生成方法和装置,属于农业方面的图像处理领域,包括:采集植株图像并标注文本信息;基于图像和文本对文本图像映射模型进行训练微调并冻结,得到图像和文本的内嵌向量;基于图像和文本的内嵌向量,构建基于扩散模型的包含文本图像先验模块和图像编码器模块的图像生成模型并训练;实际推理阶段根据基因型‑表型预测模型得到的目标植株表型数据,引导图像生成模型生成多视角小图,并输入图像超分辨模块得到高分辨率的目标植株图像。本发明采用扩散模型构建图像生成模型和图像超分辨模块,能够实现生成效率高、可扩展性强且生成图像质量高的植株表型数据可视化图像预测,为可视育种提供支撑。
-
公开(公告)号:CN117079060A
公开(公告)日:2023-11-17
申请号:CN202311325300.2
申请日:2023-10-13
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06V10/764 , G06V10/774 , G06V10/25 , G06V20/40 , G06V10/82 , G06N3/0442 , G06N3/0464 , G06N3/045
Abstract: 一种基于光合信号的叶片智能分类方法和系统,其方法包含:叶片光合信号提取、叶片光合信号分类。叶片光合信号提取通过叶片检测模型提取出视频中的叶片,使用分割算法对提取出的叶片进行分割,从而分割出叶片区块,然后以叶片区块内的像素均值记为当前帧的光合信号值,视频的多帧连续光合信号值即组成此叶片的光合信号。叶片光合信号分类使用神经网络对采集到的叶片光合信号进行特征提取训练,来实现叶片的分类。本发明提出一种基于植物叶片的光合信号,确定其提取方法,并针对植物叶片的光合信号变化,采用深度学习训练的方式,提取出植物叶片与其光合信号变化的相关性,从而大大提高叶片分类的精度。
-
-
-
-
-
-
-
-
-