-
公开(公告)号:CN114998999A
公开(公告)日:2022-09-02
申请号:CN202210856428.0
申请日:2022-07-21
Abstract: 本发明公开一种基于多帧输入与轨迹平滑的多目标跟踪方法和装置,方法包括:步骤S1:获取行人视频数据集并进行行人坐标以及行人轨迹的标注,并生成片段型轨迹数据;步骤S2:构造并训练基于多帧输入与轨迹平滑的行人多目标跟踪网络模型;步骤S3:基于训练得到的行人多目标跟踪网络模型进行推理,获取当前帧行人目标检测与特征提取结果以及其前几帧的行人目标检测与特征提取结果,即获取得到多帧图像目标的坐标及外观特征;步骤S4:利用多帧图像目标的坐标及外观特征进行最短特征距离匹配,并利用轨迹曲率平滑函数进行轨迹平滑,最终得到当前帧的轨迹。本发明具有耗时低,且对同类目标的遮挡问题鲁棒性较好的优点。
-
公开(公告)号:CN113436237B
公开(公告)日:2021-12-21
申请号:CN202110987333.8
申请日:2021-08-26
Applicant: 之江实验室
Abstract: 本发明涉及一种基于高斯过程迁移学习的复杂曲面高效测量系统,主要针对形貌随机复杂的2.5D连续曲面,由于训练数据集和测试数据存在的分布上的差异,利用高斯过程在低维隐空间对测试数据进行操作,使其分布逼近训练数据集,该系统包括点云自适应采样模块、曲面配准和稀疏误差重建模块、误差像素化和归一化模块、编码器模块、高斯过程处理模块、解码器模块、解归一化模块、点云空间映射模块,最终将稀疏的点云数据进行增强得到高质量高密度的点云数据。该系统针对接触式形貌测量传感器测量效率较低的问题,通过结合高斯过程和基于深度学习的超分辨技术,完成对稀疏测量数据的高精度加密,具有测量效率高、点云上采样精度高和曲面细节还原性高的优点。
-
-
公开(公告)号:CN117011316B
公开(公告)日:2024-02-06
申请号:CN202311278665.4
申请日:2023-10-07
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06T7/11 , G06T7/00 , G06T5/70 , G06T3/4053 , G06T7/62
Abstract: 一种基于CT图像的大豆茎秆内部结构辨识方法和系统,该方法包括:步骤一,将大豆盆栽放入植物CT采集设备,利用micro‑CT设备对大豆植株进行从上而下的扫描,得到采集的大豆茎秆CT图像数据;步骤二,对采集的CT图像数据集进行数据增强,引入扩散模型对数据进行超分辨处理,获取更丰富的组织细节信息;步骤三,对CT图像进行分割,得到大豆茎秆内部的组织结构的分割图;步骤四,根据分割结果进行体积重建,获得网格化数据,获得分割区域的体积、表面积等参数。本发明利用CT技术对大豆全生命周期的茎秆内部组织进行捕获,避免了传统破坏式捕获大豆植株内部信息,能有效提升大豆植株茎秆内部结
-
公开(公告)号:CN117036829A
公开(公告)日:2023-11-10
申请号:CN202311278518.7
申请日:2023-10-07
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06V10/74 , G06N3/0464 , G06N3/08
Abstract: 一种基于原型学习实现标签增强的叶片细粒度识别方法和系统,包括:构建细粒度叶片分类数据集;将训练图像输入模型并得到最后一层卷积网络输出的特征向量,按照图像类别标签获取每个类的平均特征值;将训练图像输入上述卷积网络,计算其在最后一个卷积层输出的向量与所有原型特征的相似度;将上述相似度结果与输入图像的真实标签进行加权融合,获得软标签;根据输入图像的真实标签,对原型特征库中对应的原型向量进行迭代更新;获取输入图像经过网络分类层输出的预测标签;将预测标签与软标签进行相似度计算,作为损失函数指导整个系统的训练;将待测图像输入训练完成的网络进行分类预测,根据预测的标签分布确定图像类别。
-
公开(公告)号:CN116071239B
公开(公告)日:2023-07-11
申请号:CN202310202482.8
申请日:2023-03-06
Applicant: 之江实验室
IPC: G06T3/40 , G06T5/50 , G06N3/0455 , G06N3/0464 , G06N3/08
Abstract: 本发明公开一种基于混合注意力模型的CT图像超分辨方法和装置,该方法包括:步骤一,获取已有的医学CT图像公开数据集和植物的原始高分辨率CT图像;步骤二,对所述植物的原始高分辨率CT图像进行多方式联合的实用退化操作,后构造高低分辨率图像数据对;步骤三,利用已有的医学CT图像公开数据集进行混合注意力模型的训练,训练完成后,继续使用高低分辨率图像数据对进行模型训练调整,得到最终调整好的混合注意力模型;步骤四,利用最终调整好的混合注意力模型,输入植物的低分辨率原始CT图像,输出目标高分辨率图像。本发明适用于农业中的CT图像,针对植物组织丰富的特点,实现植物组织的无损高精度检测和超分辨重建。
-
公开(公告)号:CN115019296A
公开(公告)日:2022-09-06
申请号:CN202210930782.3
申请日:2022-08-04
IPC: G06V20/62 , G06V10/764 , G06V10/774 , G06V10/82 , G06N3/04 , G06N3/08
Abstract: 本发明涉及计算机视觉领域,尤其涉及一种基于级联的车牌检测识别方法和装置,该方法包括:步骤一,通过摄像头获取视频图像,使用车牌检测模型,输出每张图像中检测到的车牌矩形边界框和包络框的位置;步骤二,基于步骤一车牌检测的结果,采用仿射变换以得到车牌的正面视角图;步骤三,将所述车牌的正面视角图输入到基于深度卷积神经网络的二分类器中,判断车牌是否为真正的车牌,是则保留,否则移除;步骤四:将步骤三去除假样例后的车牌,通过车牌识别技术实现车牌号码识别,获取检测图像中的所有车牌位置及号码。本发明实现方法简单,可移植性强,能够实现不限于移动摄像头拍摄的公路上、停车场、小区出入口等场所中车牌的精准识别。
-
公开(公告)号:CN115019215A
公开(公告)日:2022-09-06
申请号:CN202210947014.9
申请日:2022-08-09
Applicant: 之江实验室
IPC: G06V20/17 , G06V20/10 , G06V10/82 , G06V10/764 , G06V10/26 , G06V10/778
Abstract: 本发明公开一种基于高光谱图像的大豆病虫害识别方法和装置,该方法包括:步骤一,利用无人机搭载的高光谱相机与RGB相机采集高光谱数据集及其对应的RGB数据集;步骤二,对采集的高光谱数据集进行数据增广;步骤三,对RGB图像进行植株区域分割后与对应的高光谱图像进行像素点相乘得到含植株区域的图像,对该图像进行预处理计算出各类别平均光谱特性曲线;步骤四,输入高光谱数据集至大豆病虫害识别网络模型,采用课程学习方式以及各类别平均光谱特性曲线进行模型训练;步骤五,采用训练好的大豆病虫害识别网络模型,对采集输入的高光谱图像进行预测分类,输出最终预测的虫害类别。本发明能有效提高大豆病虫害识别的准确度。
-
公开(公告)号:CN114972976A
公开(公告)日:2022-08-30
申请号:CN202210902801.1
申请日:2022-07-29
Applicant: 之江实验室
Abstract: 本发明公开了基于频域自注意力机制的夜间目标检测、训练方法及装置,采用具有夜间图像检测标签的开源数据集训练检测网络,首先将输入图像进行预处理,使其从RGB转化为YUV通道,分别将三个通道的图像划分成多个区块;对于三个通道的各个区块,分别进行DCT离散余弦变换;将各个区块中属于同一频域的信息依据其原本的空间关系存入同一通道中,生成数个代表不同频域的通道;将所有频域通道输入自注意力网络模块,该模块通过计算各通道之间的可缩放点积自注意力,输出每个通道动态加权后的数值,再将其分别输入相同的多层感知器MLP;将输出结果输入检测网络中,最终获得图像的检测结果。
-
公开(公告)号:CN114022727A
公开(公告)日:2022-02-08
申请号:CN202111221950.3
申请日:2021-10-20
Applicant: 之江实验室
IPC: G06V10/774 , G06V10/82 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明公开了本发明公开一种基于图像知识回顾的深度卷积神经网络自蒸馏方法,该方法首先针对目标网络设置辅助网络,在目标网络的下采样层引出分支,采用知识回顾的思路依次融合和连接各个分支,在训练过程中,通过监督学习以及采用目标网络的下采样层向引出分支层进行学习的方式,达到自蒸馏的目的。本发明在深度卷积神经网络自蒸馏领域引入知识回顾的思路,提高了深度卷积神经网络的训练精度;采用辅助网络的形式进行自蒸馏,相对使用数据增强来拉进类内距离的自蒸馏方法,在实际应用中更加简洁方便。
-
-
-
-
-
-
-
-
-